Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Sci Adv ; 9(43): eadi7352, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889963

RESUMEN

In meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB. We previously showed that, in somatic cancer cells ectopically producing HSF2BP, DNA damage can trigger HSF2BP-dependent degradation of BRCA2, which prevents HR. Here, we report that, upon binding to BRCA2, HSF2BP forms octameric rings that are able to interlock into a large ring-shaped 24-mer. Addition of BRME1 leads to dissociation of both of these ring structures and cancels the disruptive effect of HSF2BP on cancer cell resistance to DNA damage. It also prevents BRCA2 degradation during interstrand DNA crosslink repair in Xenopus egg extracts. We propose that, during meiosis, the control of HSF2BPBRCA2 oligomerization by BRME1 ensures timely assembly of the ring complex that concentrates BRCA2 and controls its turnover, thus promoting HR.


Asunto(s)
Recombinación Homóloga , Recombinasa Rad51 , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Daño del ADN
3.
Nature ; 621(7978): 415-422, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674080

RESUMEN

DNA double-strand breaks (DSBs) are deleterious lesions that challenge genome integrity. To mitigate this threat, human cells rely on the activity of multiple DNA repair machineries that are tightly regulated throughout the cell cycle1. In interphase, DSBs are mainly repaired by non-homologous end joining and homologous recombination2. However, these pathways are completely inhibited in mitosis3-5, leaving the fate of mitotic DSBs unknown. Here we show that DNA polymerase theta6 (Polθ) repairs mitotic DSBs and thereby maintains genome integrity. In contrast to other DSB repair factors, Polθ function is activated in mitosis upon phosphorylation by Polo-like kinase 1 (PLK1). Phosphorylated Polθ is recruited by a direct interaction with the BRCA1 C-terminal domains of TOPBP1 to mitotic DSBs, where it mediates joining of broken DNA ends. Loss of Polθ leads to defective repair of mitotic DSBs, resulting in a loss of genome integrity. This is further exacerbated in cells that are deficient in homologous recombination, where loss of mitotic DSB repair by Polθ results in cell death. Our results identify mitotic DSB repair as the underlying cause of synthetic lethality between Polθ and homologous recombination. Together, our findings reveal the critical importance of mitotic DSB repair in the maintenance of genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN Polimerasa Dirigida por ADN , Mitosis , Proteínas Serina-Treonina Quinasas , Humanos , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Recombinación Homóloga/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Mutaciones Letales Sintéticas , ADN Polimerasa theta , Quinasa Tipo Polo 1
4.
Biomolecules ; 11(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34356684

RESUMEN

The maintenance of genome integrity in the cell is an essential process for the accurate transmission of the genetic material. BRCA2 participates in this process at several levels, including DNA repair by homologous recombination, protection of stalled replication forks, and cell division. These activities are regulated and coordinated via cell-cycle dependent modifications. Pathogenic variants in BRCA2 cause genome instability and are associated with breast and/or ovarian cancers. BRCA2 is a very large protein of 3418 amino acids. Most well-characterized variants causing a strong predisposition to cancer are mutated in the C-terminal 700 residues DNA binding domain of BRCA2. The rest of the BRCA2 protein is predicted to be disordered. Interactions involving intrinsically disordered regions (IDRs) remain difficult to identify both using bioinformatics tools and performing experimental assays. However, the lack of well-structured binding sites provides unique functional opportunities for BRCA2 to bind to a large set of partners in a tightly regulated manner. We here summarize the predictive and experimental arguments that support the presence of disorder in BRCA2. We describe how BRCA2 IDRs mediate self-assembly and binding to partners during DNA double-strand break repair, mitosis, and meiosis. We highlight how phosphorylation by DNA repair and cell-cycle kinases regulate these interactions. We finally discuss the impact of cancer-associated variants on the function of BRCA2 IDRs and more generally on genome stability and cancer risk.


Asunto(s)
Proteína BRCA2/química , Proteína BRCA2/metabolismo , Reparación del ADN/fisiología , Proteína BRCA2/genética , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Femenino , Humanos , Interfase/fisiología , Espectroscopía de Resonancia Magnética , Mitosis , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
5.
Nat Commun ; 12(1): 4605, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326328

RESUMEN

BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espermatogénesis/fisiología , Animales , Proteína BRCA2/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cristalografía por Rayos X/métodos , Femenino , Recombinación Homóloga , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Meiosis , Ratones , Modelos Animales , Dominios y Motivos de Interacción de Proteínas , Eliminación de Secuencia
6.
Methods Mol Biol ; 2141: 793-817, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32696390

RESUMEN

In line with their high accessibility, disordered proteins are exquisite targets of kinases. Eukaryotic organisms use the so-called intrinsically disordered proteins (IDPs) or intrinsically disordered regions of proteins (IDRs) as molecular switches carrying intracellular information tuned by reversible phosphorylation schemes. Solvent-exposed serines and threonines are abundant in IDPs, and, consistently, kinases often modify disordered regions of proteins at multiple sites. In this context, nuclear magnetic resonance (NMR) spectroscopy provides quantitative, residue-specific information that permits mapping of phosphosites and monitoring of their individual kinetics. Hence, NMR monitoring emerges as an in vitro approach, complementary to mass-spectrometry or immuno-blotting, to characterize IDP phosphorylation comprehensively. Here, we describe in detail generic protocols for carrying out NMR monitoring of IDP phosphorylation, and we provide a number of practical insights that improve handiness and reproducibility of this method.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Procesamiento Proteico-Postraduccional , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Resonancia Magnética Nuclear Biomolecular/instrumentación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fosforilación , Fosfoserina/química , Fosfotreonina/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Quinasa Tipo Polo 1
7.
Angew Chem Int Ed Engl ; 59(26): 10411-10415, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32181947

RESUMEN

Abundant phosphorylation events control the activity of nuclear proteins involved in gene regulation and DNA repair. These occur mostly on disordered regions of proteins, which often contain multiple phosphosites. Comprehensive and quantitative monitoring of phosphorylation reactions is theoretically achievable at a residue-specific level using 1 H-15 N NMR spectroscopy, but is often limited by low signal-to-noise at pH>7 and T>293 K. We have developed an improved 13 Cα-13 CO correlation NMR experiment that works equally at any pH or temperature, that is, also under conditions at which kinases are active. This allows us to obtain atomic-resolution information in physiological conditions down to 25 µm. We demonstrate the potential of this approach by monitoring phosphorylation reactions, in the presence of purified kinases or in cell extracts, on a range of previously problematic targets, namely Mdm2, BRCA2, and Oct4.


Asunto(s)
Proteína BRCA2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína BRCA2/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Humanos , Concentración de Iones de Hidrógeno , Resonancia Magnética Nuclear Biomolecular , Factor 3 de Transcripción de Unión a Octámeros/química , Fosforilación , Proteínas Proto-Oncogénicas c-mdm2/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...