Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 42(7): e110496, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843541

RESUMEN

Aberrant splicing is typically attributed to splice-factor (SF) mutation and contributes to malignancies including acute myeloid leukemia (AML). Here, we discovered a mutation-independent means to extensively reprogram alternative splicing (AS). We showed that the dysregulated expression of eukaryotic translation initiation factor eIF4E elevated selective splice-factor production, thereby impacting multiple spliceosome complexes, including factors mutated in AML such as SF3B1 and U2AF1. These changes generated a splicing landscape that predominantly supported altered splice-site selection for ~800 transcripts in cell lines and ~4,600 transcripts in specimens from high-eIF4E AML patients otherwise harboring no known SF mutations. Nuclear RNA immunoprecipitations, export assays, polysome analyses, and mutational studies together revealed that eIF4E primarily increased SF production via its nuclear RNA export activity. By contrast, eIF4E dysregulation did not induce known SF mutations or alter spliceosome number. eIF4E interacted with the spliceosome and some pre-mRNAs, suggesting its direct involvement in specific splicing events. eIF4E induced simultaneous effects on numerous SF proteins, resulting in a much larger range of splicing alterations than in the case of mutation or dysregulation of individual SFs and providing a novel paradigm for splicing control and dysregulation.


Asunto(s)
Empalme Alternativo , Leucemia Mieloide Aguda , Humanos , Factores de Empalme de ARN/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Empalme del ARN , Factores Eucarióticos de Iniciación/genética , Leucemia Mieloide Aguda/genética , Mutación
2.
Cancers (Basel) ; 13(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34944805

RESUMEN

The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.

3.
J Cell Sci ; 133(14)2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576666

RESUMEN

Staufen1 (STAU1) is an RNA-binding protein involved in the post-transcriptional regulation of mRNAs. We report that a large fraction of STAU1 localizes to the mitotic spindle in colorectal cancer HCT116 cells and in non-transformed hTERT-RPE1 cells. Spindle-associated STAU1 partly co-localizes with ribosomes and active sites of translation. We mapped the molecular determinant required for STAU1-spindle association within the first 88 N-terminal amino acids, a domain that is not required for RNA binding. Interestingly, transcriptomic analysis of purified mitotic spindles revealed that 1054 mRNAs and the precursor ribosomal RNA (pre-rRNA), as well as the long non-coding RNAs and small nucleolar RNAs involved in ribonucleoprotein assembly and processing, are enriched on spindles compared with cell extracts. STAU1 knockout causes displacement of the pre-rRNA and of 154 mRNAs coding for proteins involved in actin cytoskeleton organization and cell growth, highlighting a role for STAU1 in mRNA trafficking to spindle. These data demonstrate that STAU1 controls the localization of subpopulations of RNAs during mitosis and suggests a novel role of STAU1 in pre-rRNA maintenance during mitosis, ribogenesis and/or nucleoli reassembly.


Asunto(s)
Proteínas del Citoesqueleto , ARN , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Huso Acromático/genética , Huso Acromático/metabolismo
4.
J Mol Biol ; 432(13): 3881-3897, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32335035

RESUMEN

Cell cycle is a highly regulated process that is finely coordinated by a plethora of interconnected regulators. In this paper, we report that post-transcriptional mechanisms mediated by the RNA-binding protein Staufen1 (STAU1) are essential for the proliferation of non-transformed cells (hTERT-RPE1 and IMR90). Cell sorting quantification and time-lapse video microscopy using FUCCI-hTERT-RPE1 cells identified the G1/S and G2/M phase transitions of the cell cycle as crucial steps for STAU1 functions. The level of expression of 35 transcripts coding for cell-cycle regulators is up- or down-regulated following STAU1 depletion. Among others, expression of E2F1, a transcription factor essential for the G1/S transition, is decreased in STAU1 depleted cells, dependent on a STAU1-binding site in the 3' untranslated region of E2F1 mRNA. Interestingly, E2F1, in turn, increases STAU1 transcription, highlighting a regulatory loop that enhances expression of both STAU1 and E2F1. Our results indicate that a STAU1-mediatedpost-transcriptional mechanism of gene regulation controls an mRNA regulon involved in decision making during cell-cycle phase transitions and that this mechanism is essential for cell-cycle progression in non-tumor cells.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Proteínas del Citoesqueleto/genética , Factor de Transcripción E2F1/genética , Proteínas de Unión al ARN/genética , Telomerasa/genética , Sitios de Unión/genética , Proliferación Celular/genética , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , ARN Mensajero/genética , Factores de Transcripción/genética
5.
Nucleic Acids Res ; 42(12): 7867-83, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24906885

RESUMEN

Staufen1 (Stau1) is a ribonucleic acid (RNA)-binding protein involved in the post-transcriptional regulation of gene expression. Recent studies indicate that Stau1-bound messenger RNAs (mRNAs) mainly code for proteins involved in transcription and cell cycle control. Consistently, we report here that Stau1 abundance fluctuates through the cell cycle in HCT116 and U2OS cells: it is high from the S phase to the onset of mitosis and rapidly decreases as cells transit through mitosis. Stau1 down-regulation is mediated by the ubiquitin-proteasome system and the E3 ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). Stau1 interacts with the APC/C co-activators Cdh1 and Cdc20 via its first 88 N-terminal amino acids. The importance of controlling Stau155 levels is underscored by the observation that its overexpression affects mitosis entry and impairs proliferation of transformed cells. Microarray analyses identified 275 Stau1(55)-bound mRNAs in prometaphase cells, an early mitotic step that just precedes Stau1 degradation. Interestingly, several of these mRNAs are more abundant in Stau155-containing complexes in cells arrested in prometaphase than in asynchronous cells. Our results point out for the first time to the possibility that Stau1 participates in a mechanism of post-transcriptional regulation of gene expression that is linked to cell cycle progression in cancer cells.


Asunto(s)
Ciclo Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión al ARN/metabolismo , Antígenos CD , Cadherinas/metabolismo , Proteínas Cdc20/metabolismo , Línea Celular , Línea Celular Transformada , Proliferación Celular , Proteínas del Citoesqueleto/química , Regulación hacia Abajo , Humanos , Mitosis , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Ubiquitina/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(1): 285-90, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24347639

RESUMEN

The cellular response to highly genotoxic DNA double-strand breaks (DSBs) involves the exquisite coordination of multiple signaling and repair factors. Here, we conducted a functional RNAi screen and identified BAP1 as a deubiquitinase required for efficient assembly of the homologous recombination (HR) factors BRCA1 and RAD51 at ionizing radiation (IR) -induced foci. BAP1 is a chromatin-associated protein frequently inactivated in cancers of various tissues. To further investigate the role of BAP1 in DSB repair, we used a gene targeting approach to knockout (KO) this deubiquitinase in chicken DT40 cells. We show that BAP1-deficient cells are (i) sensitive to IR and other agents that induce DSBs, (ii) defective in HR-mediated immunoglobulin gene conversion, and (iii) exhibit an increased frequency of chromosomal breaks after IR treatment. We also show that BAP1 is recruited to chromatin in the proximity of a single site-specific I-SceI-induced DSB. Finally, we identified six IR-induced phosphorylation sites in BAP1 and showed that mutation of these residues inhibits BAP1 recruitment to DSB sites. We also found that both BAP1 catalytic activity and its phosphorylation are critical for promoting DNA repair and cellular recovery from DNA damage. Our data reveal an important role for BAP1 in DSB repair by HR, thereby providing a possible molecular basis for its tumor suppressor function.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Regulación Neoplásica de la Expresión Génica , Recombinación Homóloga , Neoplasias/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Proteína BRCA1/metabolismo , Línea Celular , Línea Celular Tumoral , Pollos , Daño del ADN , Células HEK293 , Células HeLa , Humanos , Inmunoglobulinas/genética , Células MCF-7 , Microscopía Fluorescente , Mutación , Neoplasias/genética , Fenotipo , Fosforilación , Recombinasa Rad51 , Radiación Ionizante
7.
Biochem Biophys Res Commun ; 411(2): 265-70, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21741359

RESUMEN

AmyTM is a truncated mutant of the α-amylase of Bacillus stearothermophilus US100. It has been derived from the wild type amylase gene via a reading frame shift, following a tandem duplication of the mutant primer, associated to an Adenine base deletion. AmyTM was composed of 720 nucleotides encoding 240 amino acid residues out of 549 of the wild type. The AmyTM protein was devoided of the three catalytic residues but still retains catalytic activity. It is Ca-independent maltotetraose producing amylase, optimally active at pH 6 and 60°C, under monomeric or multimeric forms. AmyTM is the smallest functional truncated TIM barrel. It contains the ßαßα unit as the minimal subdomain associated to an enzymatic function. The enzymatic activity can, until now, be attributed to the presence of the whole domain B, in the structure of AmyTM. This mutant revealed, for the first time, the regeneration of a catalytic site after its abolition. This fact may be considered as the restoration of a primitive active site, which was lost in the course of evolution toward more stable domains.


Asunto(s)
Geobacillus stearothermophilus/enzimología , alfa-Amilasas/química , Secuencia de Aminoácidos , Secuencia de Bases , Geobacillus stearothermophilus/genética , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , alfa-Amilasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA