Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722021

RESUMEN

Neural stem cells (NSCs) are multipotent and correct fate determination is crucial to guarantee brain formation and homeostasis. How NSCs are instructed to generate neuronal or glial progeny is not well understood. Here, we addressed how murine adult hippocampal NSC fate is regulated and described how scaffold attachment factor B (SAFB) blocks oligodendrocyte production to enable neuron generation. We found that SAFB prevents NSC expression of the transcription factor nuclear factor I/B (NFIB) by binding to sequences in the Nfib mRNA and enhancing Drosha-dependent cleavage of the transcripts. We show that increasing SAFB expression prevents oligodendrocyte production by multipotent adult NSCs, and conditional deletion of Safb increases NFIB expression and oligodendrocyte formation in the adult hippocampus. Our results provide novel insights into a mechanism that controls Drosha functions for selective regulation of NSC fate by modulating the post-transcriptional destabilization of Nfib mRNA in a lineage-specific manner.


Asunto(s)
Hipocampo , Factores de Transcripción NFI , Células-Madre Neurales , ARN Mensajero , Ribonucleasa III , Animales , Factores de Transcripción NFI/metabolismo , Factores de Transcripción NFI/genética , Hipocampo/metabolismo , Hipocampo/citología , Ribonucleasa III/metabolismo , Ribonucleasa III/genética , Ratones , Células-Madre Neurales/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Oligodendroglía/metabolismo , Estabilidad del ARN , Diferenciación Celular
2.
Cancers (Basel) ; 14(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36358826

RESUMEN

Simultaneous genetic inactivation of the key Notch signaling mediator RBP-Jk and p53 leads to the formation of forebrain tumors in mice, suggesting a tumor suppressor role of the Notch pathway in this context. However, the contribution of individual Notch receptors to the tumor-suppressive activity of Notch signaling in the brain remains elusive. Here, we show that simultaneous Notch1 and Notch2 deletion, similar to complete ablation of canonical Notch signaling by Rbpj inactivation, cooperates with Trp53 deletion to promote tumor growth in the adult forebrain. We also demonstrate that inactivation of Notch1 and Trp53 in cells with active Notch signaling is sufficient to induce brain tumor or hyperplasia formation. Analysis of tumor location suggests a multifocal origin and shows that ventral forebrain regions and olfactory bulbs are the most affected sites. Hence, Notch1 cooperates with p53 to repress malignant transformation in the adult mouse forebrain.

3.
Dev Cell ; 57(15): 1847-1865.e9, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35803280

RESUMEN

Immune surveillance is critical to prevent tumorigenesis. Gliomas evade immune attack, but the underlying mechanisms remain poorly understood. We show that glioma cells can sustain growth independent of immune system constraint by reducing Notch signaling. Loss of Notch activity in a mouse model of glioma impairs MHC-I and cytokine expression and curtails the recruitment of anti-tumor immune cell populations in favor of immunosuppressive tumor-associated microglia/macrophages (TAMs). Depletion of T cells simulates Notch inhibition and facilitates tumor initiation. Furthermore, Notch-depleted glioma cells acquire resistance to interferon-γ and TAMs re-educating therapy. Decreased interferon response and cytokine expression by human and mouse glioma cells correlate with low Notch activity. These effects are paralleled by upregulation of oncogenes and downregulation of quiescence genes. Hence, suppression of Notch signaling enables gliomas to evade immune surveillance and increases aggressiveness. Our findings provide insights into how brain tumor cells shape their microenvironment to evade immune niche control.


Asunto(s)
Neoplasias Encefálicas , Glioma , Animales , Neoplasias Encefálicas/metabolismo , Transformación Celular Neoplásica , Citocinas , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Evasión Inmune , Interferón gamma/metabolismo , Ratones , Receptores Notch , Microambiente Tumoral/fisiología
4.
Cancer Res ; 82(4): 681-694, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34916221

RESUMEN

Blood-borne metastasis of breast cancer involves a series of tightly regulated sequential steps, including the growth of a primary tumor lesion, intravasation of circulating tumor cells (CTC), and adaptation in various distant metastatic sites. The genes orchestrating each of these steps are poorly understood in physiologically relevant contexts, owing to the rarity of experimental models that faithfully recapitulate the biology, growth kinetics, and tropism of human breast cancer. Here, we conducted an in vivo loss-of-function CRISPR screen in newly derived CTC xenografts, unique in their ability to spontaneously mirror the human disease, and identified specific genetic dependencies for each step of the metastatic process. Validation experiments revealed sensitivities to inhibitors that are already available, such as PLK1 inhibitors, to prevent CTC intravasation. Together, these findings present a new tool to reclassify driver genes involved in the spread of human cancer, providing insights into the biology of metastasis and paving the way to test targeted treatment approaches. SIGNIFICANCE: A loss-of-function CRISPR screen in human CTC-derived xenografts identifies genes critical for individual steps of the metastatic cascade, suggesting novel drivers and treatment opportunities for metastatic breast cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Neoplásicas Circulantes/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , RNA-Seq/métodos , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Quinasa Tipo Polo 1
5.
Cell Syst ; 12(3): 248-262.e7, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33592194

RESUMEN

Aggressive brain tumors like glioblastoma depend on support by their local environment and subsets of tumor parenchymal cells may promote specific phases of disease progression. We investigated the glioblastoma microenvironment with transgenic lineage-tracing models, intravital imaging, single-cell transcriptomics, immunofluorescence analysis as well as histopathology and characterized a previously unacknowledged population of tumor-associated cells with a myeloid-like expression profile (TAMEP) that transiently appeared during glioblastoma growth. TAMEP of mice and humans were identified with specific markers. Notably, TAMEP did not derive from microglia or peripheral monocytes but were generated by a fraction of CNS-resident, SOX2-positive progenitors. Abrogation of this progenitor cell population, by conditional Sox2-knockout, drastically reduced glioblastoma vascularization and size. Hence, TAMEP emerge as a tumor parenchymal component with a strong impact on glioblastoma progression.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Glioblastoma/irrigación sanguínea , Glioblastoma/patología , Células Mieloides/patología , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Masculino , Ratones , Tejido Parenquimatoso/irrigación sanguínea , Tejido Parenquimatoso/patología
6.
Cells ; 9(10)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076453

RESUMEN

Although the role of NOTCH signaling has been extensively studied in health and disease, many questions still remain unresolved. Being crucial for tissue homeostasis, NOTCH signaling is also implicated in multiple cancers by either promoting or suppressing tumor development. In this review we illustrate the context-dependent role of NOTCH signaling during tumorigenesis with a particular focus on gliomas, the most frequent and aggressive brain tumors in adults. For a long time, NOTCH has been considered an oncogene in glioma mainly by virtue of its neural stem cell-promoting activity. However, the recent identification of NOTCH-inactivating mutations in some glioma patients has challenged this notion, prompting a re-examination of the function of NOTCH in brain tumor subtypes. We discuss recent findings that might help to reconcile the controversial role of NOTCH signaling in this disease, and pose outstanding questions that still remain to be addressed.


Asunto(s)
Neoplasias Encefálicas/genética , Genes Supresores de Tumor/fisiología , Glioma/genética , Oncogenes/fisiología , Receptores Notch/fisiología , Transducción de Señal , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Homeostasis , Humanos , Células Madre Neoplásicas/patología , Células-Madre Neurales
7.
Cell Rep ; 28(6): 1485-1498.e6, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390563

RESUMEN

Neural stem cells (NSCs) in the adult mouse hippocampal dentate gyrus (DG) are mostly quiescent, and only a few are in cell cycle at any point in time. DG NSCs become increasingly dormant with age and enter mitosis less frequently, which impinges on neurogenesis. How NSC inactivity is maintained is largely unknown. Here, we found that Id4 is a downstream target of Notch2 signaling and maintains DG NSC quiescence by blocking cell-cycle entry. Id4 expression is sufficient to promote DG NSC quiescence and Id4 knockdown rescues Notch2-induced inhibition of NSC proliferation. Id4 deletion activates NSC proliferation in the DG without evoking neuron generation, and overexpression increases NSC maintenance while promoting astrogliogenesis at the expense of neurogenesis. Together, our findings indicate that Id4 is a major effector of Notch2 signaling in NSCs and a Notch2-Id4 axis promotes NSC quiescence in the adult DG, uncoupling NSC activation from neuronal differentiation.


Asunto(s)
Hipocampo/metabolismo , Proteínas Inhibidoras de la Diferenciación/metabolismo , Células-Madre Neurales/metabolismo , Receptor Notch2/metabolismo , Factores de Edad , Animales , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Femenino , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/citología
8.
Cell Rep ; 22(4): 992-1002, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29386140

RESUMEN

Neurogenesis continues in the ventricular-subventricular zone (V-SVZ) of the adult forebrain from quiescent neural stem cells (NSCs). V-SVZ NSCs are a reservoir for new olfactory bulb (OB) neurons that migrate through the rostral migratory stream (RMS). To generate neurons, V-SVZ NSCs need to activate and enter the cell cycle. The mechanisms underlying NSC transition from quiescence to activity are poorly understood. We show that Notch2, but not Notch1, signaling conveys quiescence to V-SVZ NSCs by repressing cell-cycle-related genes and neurogenesis. Loss of Notch2 activates quiescent NSCs, which proliferate and generate new neurons of the OB lineage. Notch2 deficiency results in accelerated V-SVZ NSC exhaustion and an aging-like phenotype. Simultaneous loss of Notch1 and Notch2 resembled the total loss of Rbpj-mediated canonical Notch signaling; thus, Notch2 functions are not compensated in NSCs, and Notch2 is indispensable for the maintenance of NSC quiescence in the adult V-SVZ.


Asunto(s)
Ventrículos Laterales/crecimiento & desarrollo , Células-Madre Neurales/metabolismo , Receptor Notch2/genética , Animales , Diferenciación Celular , Ratones , Transducción de Señal
9.
Cancer Cell ; 28(6): 730-742, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26669487

RESUMEN

In the brain, Notch signaling maintains normal neural stem cells, but also brain cancer stem cells, indicating an oncogenic role. Here, we identify an unexpected tumor suppressor function for Notch in forebrain tumor subtypes. Genetic inactivation of RBP-Jκ, a key Notch mediator, or Notch1 and Notch2 receptors accelerates PDGF-driven glioma growth in mice. Conversely, genetic activation of the Notch pathway reduces glioma growth and increases survival. In humans, high Notch activity strongly correlates with distinct glioma subtypes, increased patient survival, and lower tumor grade. Additionally, simultaneous inactivation of RBP-Jκ and p53 induces primitive neuroectodermal-like tumors in mice. Hence, Notch signaling cooperates with p53 to restrict cell proliferation and tumor growth in mouse models of human brain tumors.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Células-Madre Neurales/metabolismo , Prosencéfalo/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Proliferación Celular , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Transferencia de Gen , Glioma/genética , Glioma/mortalidad , Glioma/patología , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Infusiones Intraventriculares , Estimación de Kaplan-Meier , Ratones Noqueados , Clasificación del Tumor , Células Madre Neoplásicas/patología , Células-Madre Neurales/patología , Fenotipo , Factor de Crecimiento Derivado de Plaquetas/administración & dosificación , Prosencéfalo/patología , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores Notch/genética , Proteínas Recombinantes/administración & dosificación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Tiempo , Carga Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
10.
Front Neurosci ; 8: 32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24611040

RESUMEN

Adult neural stem cells (NSCs) are perceived as a homogeneous population of cells that divide infrequently and are capable of multi-lineage differentiation. However, recent data revealed that independent stem cell lineages act in parallel to maintain neurogenesis and provide a cellular source for tissue repair. In addition, even within the same lineage, the stem and progenitor cells are strikingly heterogeneous including NSCs that are dormant or mitotically active. We will discuss these different NSC populations and activity states with relation to their role in neurogenesis and regeneration but also how these different stem cells respond to aging. NSCs depend on Notch signaling for their maintenance. While Notch-dependence is a common feature among NSC populations, we will discuss how differences in Notch signaling might contribute to adult NSC heterogeneity. Understanding the fate of multiple NSC populations with distinct functions has implications for the mechanisms of aging and regeneration.

11.
Stem Cells ; 32(1): 70-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23964022

RESUMEN

Neural stem cells (NSCs) in the ventricular domain of the subventricular zone (V-SVZ) of rodents produce neurons throughout life while those in humans become largely inactive or may be lost during infancy. Most adult NSCs are quiescent, express glial markers, and depend on Notch signaling for their self-renewal and the generation of neurons. Using genetic markers and lineage tracing, we identified subpopulations of adult V-SVZ NSCs (type 1, 2, and 3) indicating a striking heterogeneity including activated, brain lipid binding protein (BLBP, FABP7) expressing stem cells. BLBP(+) NSCs are mitotically active components of pinwheel structures in the lateral ventricle walls and persistently generate neurons in adulthood. BLBP(+) NSCs express epidermal growth factor (EGF) receptor, proliferate in response to EGF, and are a major clonogenic population in the SVZ. We also find BLBP expressed by proliferative ventricular and subventricular progenitors in the fetal and postnatal human brain. Loss of BLBP(+) stem/progenitor cells correlates with reduced neurogenesis in aging rodents and postnatal humans. These findings of molecular heterogeneity and proliferative differences subdivide the NSC population and have implications for neurogenesis in the forebrain of mammals during aging.


Asunto(s)
Células-Madre Neurales/citología , Neuronas/citología , Prosencéfalo/citología , Animales , Procesos de Crecimiento Celular/fisiología , Humanos , Ratones , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/metabolismo , Prosencéfalo/metabolismo , Transducción de Señal
12.
Development ; 141(1): 83-90, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24284211

RESUMEN

Adult neurogenesis is tightly regulated through the interaction of neural stem/progenitor cells (NSCs) with their niche. Neurotransmitters, including GABA activation of GABAA receptor ion channels, are important niche signals. We show that adult mouse hippocampal NSCs and their progeny express metabotropic GABAB receptors. Pharmacological inhibition of GABAB receptors stimulated NSC proliferation and genetic deletion of GABAB1 receptor subunits increased NSC proliferation and differentiation of neuroblasts in vivo. Cell-specific conditional deletion of GABAB receptors supports a cell-autonomous role in newly generated cells. Our data indicate that signaling through GABAB receptors is an inhibitor of adult neurogenesis.


Asunto(s)
Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Receptores de GABA-B/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Apoptosis , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/genética , Antagonistas de Receptores de GABA-B/farmacología , Hipocampo/citología , Ratones , Ratones Noqueados , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Compuestos Organofosforados/farmacología , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-B/genética , Transducción de Señal/fisiología
13.
J Neurosci ; 32(16): 5654-66, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22514327

RESUMEN

The adult mammalian forebrain contains neural stem/progenitor cells (NSCs) that generate neurons throughout life. As in other somatic stem cell systems, NSCs are proposed to be predominantly quiescent and proliferate only sporadically to produce more committed progeny. However, quiescence has recently been shown not to be an essential criterion for stem cells. It is not known whether NSCs show differences in molecular dependence based on their proliferation state. The subventricular zone (SVZ) of the adult mouse brain has a remarkable capacity for repair by activation of NSCs. The molecular interplay controlling adult NSCs during neurogenesis or regeneration is not clear but resolving these interactions is critical in order to understand brain homeostasis and repair. Using conditional genetics and fate mapping, we show that Notch signaling is essential for neurogenesis in the SVZ. By mosaic analysis, we uncovered a surprising difference in Notch dependence between active neurogenic and regenerative NSCs. While both active and regenerative NSCs depend upon canonical Notch signaling, Notch1-deletion results in a selective loss of active NSCs (aNSCs). In sharp contrast, quiescent NSCs (qNSCs) remain after Notch1 ablation until induced during regeneration or aging, whereupon they become Notch1-dependent and fail to fully reinstate neurogenesis. Our results suggest that Notch1 is a key component of the adult SVZ niche, promoting maintenance of aNSCs, and that this function is compensated in qNSCs. Therefore, we confirm the importance of Notch signaling for maintaining NSCs and neurogenesis in the adult SVZ and reveal that NSCs display a selective reliance on Notch1 that may be dictated by mitotic state.


Asunto(s)
Células Madre Adultas/fisiología , Ventrículos Laterales/citología , Neurogénesis/fisiología , Receptor Notch1/metabolismo , Nicho de Células Madre/fisiología , Células Madre Adultas/efectos de los fármacos , Animales , Proteínas Portadoras/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Diferenciación Celular/genética , Citarabina/farmacología , Antagonistas de Estrógenos/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Inmunosupresores/farmacología , Proteínas de Filamentos Intermediarios/genética , Ventrículos Laterales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neurogénesis/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas/genética , Proteínas/metabolismo , ARN no Traducido , Receptor Notch1/deficiencia , Receptores de Estrógenos/genética , Nicho de Células Madre/genética , Tamoxifeno/farmacología , Factores de Tiempo
14.
Nat Commun ; 3: 670, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22334073

RESUMEN

Neural stem/progenitor cells generate neurons in the adult hippocampus. Neural stem cells produce transient intermediate progenitors (type-2 cells), which generate neuroblasts (type-3 cells) that exit the cell cycle, and differentiate into neurons. The precise dynamics of neuron production from the neural stem cells remains controversial. Here we lineage trace Notch-dependent neural stem cells in the dentate gyrus and show that over 7-21 days, the progeny of the neural stem cells progress through an Ascl1(high) intermediate stage (type-2a) to neuroblasts. However, contrary to predictions, this Ascl1(high) population is not an amplifying intermediate, but it differentiates into mitotic Tbr2(+) early neuroblasts, which in turn expand the lineage. After 100 days, the majority of the neural stem cell progeny are neuroblasts or postmitotic neurons. Hence, the neural stem cells require many weeks to generate differentiated neurons. On the basis of this temporal delay in differentiation and population expansion, we propose that the neural stem cell and early neuroblast divisions drive dentate gyrus neurogenesis and not the amplification of type-2a intermediate progenitors as was previously thought.


Asunto(s)
Hipocampo/metabolismo , Neurogénesis , Células Madre/citología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/farmacología , Diferenciación Celular/genética , Linaje de la Célula , Biología Evolutiva/métodos , Ratones , Ratones Transgénicos , Mitosis , Células-Madre Neurales , Neuronas/citología , Neuronas/metabolismo
15.
PLoS One ; 7(1): e30011, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253858

RESUMEN

Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.


Asunto(s)
Sitios Genéticos/genética , Integrasas/metabolismo , Mutagénesis Insercional/métodos , Regiones Promotoras Genéticas/genética , Proteínas/genética , Transgenes/genética , Animales , Sitios de Ligazón Microbiológica/genética , Células Madre Embrionarias/metabolismo , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/metabolismo , Luciferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Especificidad de Órganos/genética , ARN no Traducido
16.
Front Neurosci ; 5: 113, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21994486

RESUMEN

In the olfactory bulb of adult rodents, local interneurons are constantly replaced by immature precursors derived from the subventricular zone. Whether any olfactory sensory process specifically relies on this cell renewal remains largely unclear. By using the well known model of mating-induced imprinting to avoid pregnancy block, which requires accessory olfactory bulb (AOB) function, we demonstrate that this olfactory memory formation critically depends on the presence of newborn granule neurons in this brain region. We show that, in adult female mice, exposure to the male urine compounds involved in mate recognition increases the number of new granule cells surviving in the AOB. This process is modulated by male signals sensed through the vomeronasal organ and, in turn, changes the activity of the downstream amygdaloid and hypothalamic nuclei involved in the pregnancy block response. Chemical depletion of newly generated bulbar interneurons causes strong impairment in mate recognition, thus resulting in a high pregnancy failure rate to familiar mating male odors. Taken together, our results indicate that adult neurogenesis is essential for specific brain functions such as persistent odor learning and mate recognition.

17.
J Neurosci ; 30(41): 13794-807, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20943920

RESUMEN

The generation of new neurons from neural stem cells in the adult hippocampal dentate gyrus contributes to learning and mood regulation. To sustain hippocampal neurogenesis throughout life, maintenance of the neural stem cell pool has to be tightly controlled. We found that the Notch/RBPJκ-signaling pathway is highly active in neural stem cells of the adult mouse hippocampus. Conditional inactivation of RBPJκ in neural stem cells in vivo resulted in increased neuronal differentiation of neural stem cells in the adult hippocampus at an early time point and depletion of the Sox2-positive neural stem cell pool and suppression of hippocampal neurogenesis at a later time point. Moreover, RBPJκ-deficient neural stem cells displayed impaired self-renewal in vitro and loss of expression of the transcription factor Sox2. Interestingly, we found that Notch signaling increases Sox2 promoter activity and Sox2 expression in adult neural stem cells. In addition, activated Notch and RBPJκ were highly enriched on the Sox2 promoter in adult hippocampal neural stem cells, thus identifying Sox2 as a direct target of Notch/RBPJκ signaling. Finally, we found that overexpression of Sox2 can rescue the self-renewal defect in RBPJκ-deficient neural stem cells. These results identify RBPJκ-dependent pathways as essential regulators of adult neural stem cell maintenance and suggest that the actions of RBPJκ are, at least in part, mediated by control of Sox2 expression.


Asunto(s)
Células Madre Adultas/metabolismo , Hipocampo/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Neuronas/metabolismo , Animales , Western Blotting , Recuento de Células , Inmunoprecipitación de Cromatina , Femenino , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Neurogénesis/fisiología , Receptores Notch/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Estadísticas no Paramétricas
18.
Cell Stem Cell ; 6(5): 445-56, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20452319

RESUMEN

New neurons are generated in the adult hippocampus throughout life by neural stem/progenitor cells (NSCs), and neurogenesis is a plastic process responsive to external stimuli. We show that canonical Notch signaling through RBP-J is required for hippocampal neurogenesis. Notch signaling distinguishes morphologically distinct Sox2(+) NSCs, and within these pools subpopulations can shuttle between mitotically active or quiescent. Radial and horizontal NSCs respond selectively to neurogenic stimuli. Physical exercise activates the quiescent radial population whereas epileptic seizures induce expansion of the horizontal NSC pool. Surprisingly, reduced neurogenesis correlates with a loss of active horizontal NSCs in aged mice rather than a total loss of stem cells, and the transition to a quiescent state is reversible to rejuvenate neurogenesis in the brain. The discovery of multiple NSC populations with Notch dependence but selective responses to stimuli and reversible quiescence has important implications for the mechanisms of adaptive learning and also for regenerative therapy.


Asunto(s)
Envejecimiento/patología , Forma de la Célula , Hipocampo/patología , Neuronas/patología , Condicionamiento Físico Animal , Convulsiones/patología , Células Madre/patología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Proliferación Celular , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Células Madre Multipotentes/metabolismo , Células Madre Multipotentes/patología , Neurogénesis , Neuronas/metabolismo , Receptores Notch/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Convulsiones/metabolismo , Transducción de Señal , Células Madre/metabolismo
19.
Nat Neurosci ; 12(10): 1248-56, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19734891

RESUMEN

Neural stem cells (NSCs) are controlled by diffusible factors. The transcription factor Sox2 is expressed by NSCs and Sox2 mutations in humans cause defects in the brain and, in particular, in the hippocampus. We deleted Sox2 in the mouse embryonic brain. At birth, the mice showed minor brain defects; shortly afterwards, however, NSCs and neurogenesis were completely lost in the hippocampus, leading to dentate gyrus hypoplasia. Deletion of Sox2 in adult mice also caused hippocampal neurogenesis loss. The hippocampal developmental defect resembles that caused by late sonic hedgehog (Shh) loss. In mutant mice, Shh and Wnt3a were absent from the hippocampal primordium. A SHH pharmacological agonist partially rescued the hippocampal defect. Chromatin immunoprecipitation identified Shh as a Sox2 target. Sox2-deleted NSCs did not express Shh in vitro and were rapidly lost. Their replication was partially rescued by the addition of SHH and was almost fully rescued by conditioned medium from normal cells. Thus, NSCs control their status, at least partly, through Sox2-dependent autocrine mechanisms.


Asunto(s)
Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/fisiología , Hipocampo , Neuronas/fisiología , Factores de Transcripción SOXB1/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Supervivencia Celular , Células Cultivadas , Inmunoprecipitación de Cromatina/métodos , Medios de Cultivo Condicionados/farmacología , ADN Nucleotidiltransferasas/genética , Ensayo de Cambio de Movilidad Electroforética/métodos , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía , Proteínas Fluorescentes Verdes/genética , Proteínas Hedgehog/antagonistas & inhibidores , Hipocampo/citología , Hipocampo/embriología , Hipocampo/crecimiento & desarrollo , Etiquetado Corte-Fin in Situ/métodos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Proteínas de Filamentos Intermediarios/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nestina , Neurogénesis/genética , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/deficiencia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt3 , Proteína Wnt3A
20.
Eur J Neurosci ; 30(1): 9-24, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19558606

RESUMEN

The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo. Taking advantage of the recombination characteristics of a nestin::CreER(T2) allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER(T2)-expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER(T2)-expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER(T2)-targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.


Asunto(s)
Células Madre Adultas/fisiología , Linaje de la Célula , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Nicho de Células Madre/citología , Células Madre Adultas/trasplante , Animales , Animales Recién Nacidos , Encéfalo/fisiología , Proliferación Celular , Ventrículos Cerebrales/fisiología , Epéndimo/fisiología , Proteínas de Filamentos Intermediarios/genética , Ratones , Ratones Transgénicos , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Nestina , Neuroglía/fisiología , Ratas , Nicho de Células Madre/fisiología , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...