Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
JMIR Public Health Surveill ; 10: e52353, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024001

RESUMEN

BACKGROUND: Multimorbidity is a significant public health concern, characterized by the coexistence and interaction of multiple preexisting medical conditions. This complex condition has been associated with an increased risk of COVID-19. Individuals with multimorbidity who contract COVID-19 often face a significant reduction in life expectancy. The postpandemic period has also highlighted an increase in frailty, emphasizing the importance of integrating existing multimorbidity details into epidemiological risk assessments. Managing clinical data that include medical histories presents significant challenges, particularly due to the sparsity of data arising from the rarity of multimorbidity conditions. Also, the complex enumeration of combinatorial multimorbidity features introduces challenges associated with combinatorial explosions. OBJECTIVE: This study aims to assess the severity of COVID-19 in individuals with multiple medical conditions, considering their demographic characteristics such as age and sex. We propose an evolutionary machine learning model designed to handle sparsity, analyzing preexisting multimorbidity profiles of patients hospitalized with COVID-19 based on their medical history. Our objective is to identify the optimal set of multimorbidity feature combinations strongly associated with COVID-19 severity. We also apply the Apriori algorithm to these evolutionarily derived predictive feature combinations to identify those with high support. METHODS: We used data from 3 administrative sources in Piedmont, Italy, involving 12,793 individuals aged 45-74 years who tested positive for COVID-19 between February and May 2020. From their 5-year pre-COVID-19 medical histories, we extracted multimorbidity features, including drug prescriptions, disease diagnoses, sex, and age. Focusing on COVID-19 hospitalization, we segmented the data into 4 cohorts based on age and sex. Addressing data imbalance through random resampling, we compared various machine learning algorithms to identify the optimal classification model for our evolutionary approach. Using 5-fold cross-validation, we evaluated each model's performance. Our evolutionary algorithm, utilizing a deep learning classifier, generated prediction-based fitness scores to pinpoint multimorbidity combinations associated with COVID-19 hospitalization risk. Eventually, the Apriori algorithm was applied to identify frequent combinations with high support. RESULTS: We identified multimorbidity predictors associated with COVID-19 hospitalization, indicating more severe COVID-19 outcomes. Frequently occurring morbidity features in the final evolved combinations were age>53, R03BA (glucocorticoid inhalants), and N03AX (other antiepileptics) in cohort 1; A10BA (biguanide or metformin) and N02BE (anilides) in cohort 2; N02AX (other opioids) and M04AA (preparations inhibiting uric acid production) in cohort 3; and G04CA (Alpha-adrenoreceptor antagonists) in cohort 4. CONCLUSIONS: When combined with other multimorbidity features, even less prevalent medical conditions show associations with the outcome. This study provides insights beyond COVID-19, demonstrating how repurposed administrative data can be adapted and contribute to enhanced risk assessment for vulnerable populations.


Asunto(s)
COVID-19 , Hospitalización , Aprendizaje Automático , Multimorbilidad , Humanos , COVID-19/epidemiología , Italia/epidemiología , Masculino , Femenino , Anciano , Hospitalización/estadística & datos numéricos , Persona de Mediana Edad , Estudios Longitudinales , Anciano de 80 o más Años
2.
BMC Med Res Methodol ; 24(1): 95, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658821

RESUMEN

BACKGROUND: Multimorbidity is typically associated with deficient health-related quality of life in mid-life, and the likelihood of developing multimorbidity in women is elevated. We address the issue of data sparsity in non-prevalent features by clustering the binary data of various rare medical conditions in a cohort of middle-aged women. This study aims to enhance understanding of how multimorbidity affects COVID-19 severity by clustering rare medical conditions and combining them with prevalent features for predictive modeling. The insights gained can guide the development of targeted interventions and improved management strategies for individuals with multiple health conditions. METHODS: The study focuses on a cohort of 4477 female patients, (aged 45-60) in Piedmont, Italy, and utilizes their multimorbidity data prior to the COVID-19 pandemic from their medical history from 2015 to 2019. The COVID-19 severity is determined by the hospitalization status of the patients from February to May 2020. Each patient profile in the dataset is depicted as a binary vector, where each feature denotes the presence or absence of a specific multimorbidity condition. By clustering the sparse medical data, newly engineered features are generated as a bin of features, and they are combined with the prevalent features for COVID-19 severity predictive modeling. RESULTS: From sparse data consisting of 174 input features, we have created a low-dimensional feature matrix of 17 features. Machine Learning algorithms are applied to the reduced sparsity-free data to predict the Covid-19 hospital admission outcome. The performance obtained for the corresponding models are as follows: Logistic Regression (accuracy 0.72, AUC 0.77, F1-score 0.69), Linear Discriminant Analysis (accuracy 0.7, AUC 0.77, F1-score 0.67), and Ada Boost (accuracy 0.7, AUC 0.77, F1-score 0.68). CONCLUSION: Mapping higher-dimensional data to a low-dimensional space can result in information loss, but reducing sparsity can be beneficial for Machine Learning modeling due to improved predictive ability. In this study, we addressed the issue of data sparsity in electronic health records and created a model that incorporates both prevalent and rare medical conditions, leading to more accurate and effective predictive modeling. The identification of complex associations between multimorbidity and the severity of COVID-19 highlights potential areas of focus for future research, including long COVID and intervention efforts.


Asunto(s)
COVID-19 , Multimorbilidad , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Femenino , Persona de Mediana Edad , Italia/epidemiología , Análisis por Conglomerados , Índice de Severidad de la Enfermedad , Hospitalización/estadística & datos numéricos , Calidad de Vida , Estudios de Cohortes , Aprendizaje Automático
3.
Animals (Basel) ; 13(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37370426

RESUMEN

Automatic milking systems (AMS) have played a pioneering role in the advancement of Precision Livestock Farming, revolutionizing the dairy farming industry on a global scale. This review specifically targets papers that focus on the use of modeling approaches within the context of AMS. We conducted a thorough review of 60 articles that specifically address the topics of cows' health, production, and behavior/management Machine Learning (ML) emerged as the most widely used method, being present in 63% of the studies, followed by statistical analysis (14%), fuzzy algorithms (9%), deterministic models (7%), and detection algorithms (7%). A significant majority of the reviewed studies (82%) primarily focused on the detection of cows' health, with a specific emphasis on mastitis, while only 11% evaluated milk production. Accurate forecasting of dairy cow milk yield and understanding the deviation between expected and observed milk yields of individual cows can offer significant benefits in dairy cow management. Likewise, the study of cows' behavior and herd management in AMSs is under-explored (7%). Despite the growing utilization of machine learning (ML) techniques in the field of dairy cow management, there remains a lack of a robust methodology for their application. Specifically, we found a substantial disparity in adequately balancing the positive and negative classes within health prediction models.

4.
Animals (Basel) ; 13(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048383

RESUMEN

Antiviral (AV) drugs are the main line of defense against pandemic influenza. However, different administration policies are applied in countries with different stocks of AV drugs. These policies lead to different occurrences of drug metabolites in the aquatic environment, altering animal behavior with evolutionary consequences on viruses. The aim of this study was to investigate the potential impact of environmental pollution by human antivirals, such as oseltamivir carboxylate (OC), on the evolutionary rate of avian influenza. We used NA, HA, NP, and MP viral segments from two groups of neighboring countries sharing migratory routes of wild birds and characterized by different AV stockpiles. BEAST analyses were performed using the uncorrelated lognormal clock evolutionary model and the Bayesian skyline tree prior model. The ratios between the rate of evolution of the NA gene and the HA, NP, and MP segments were considered. The two groups of countries were compared by analyzing the differences in the ratio distributions. Our analyses highlighted a possible different behavior in the evolution of H5N1 2.3 clade viral strains when OC environmental pollution is present. In conclusion, the widespread consumption of antivirals and their presence in wastewater could influence the selective pressure on viruses.

5.
J Vet Intern Med ; 37(2): 766-773, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36896810

RESUMEN

BACKGROUND: Central nervous system (CNS) infections in cattle are a major cause of economic loss and mortality. Machine learning (ML) techniques are gaining widespread application in solving predictive tasks in both human and veterinary medicine. OBJECTIVES: Our primary aim was to develop and compare ML models that could predict the likelihood of a CNS disorder of infectious or inflammatory origin in neurologically-impaired cattle. Our secondary aim was to create a user-friendly web application based on the ML model for the diagnosis of infection and inflammation of the CNS. ANIMALS: Ninety-eight cattle with CNS infection and 86 with CNS disorders of other origin. METHODS: Retrospective observational study. Six different ML methods (logistic regression [LR]; support vector machine [SVM]; random forest [RF]; multilayer perceptron [MLP]; K-nearest neighbors [KNN]; gradient boosting [GB]) were compared for their ability to predict whether an infectious or inflammatory disease was present based on demographics, neurological examination findings, and cerebrospinal fluid (CSF) analysis. RESULTS: All 6 methods had high prediction accuracy (≥80%). The accuracy of the LR model was significantly higher (0.843 ± 0.005; receiver operating characteristic [ROC] curve 0.907 ± 0.005 ) than the other models and was selected for implementation in a web application. CONCLUSION AND CLINICAL IMPORTANCE: Our findings support the use of ML algorithms as promising tools for veterinarians to improve diagnosis. The open-access web application may aid clinicians in achieving correct diagnosis of infectious and inflammatory neurological disorders in livestock, with the added benefit of promoting appropriate use of antimicrobials.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades del Sistema Nervioso Central , Animales , Bovinos , Algoritmos , Enfermedades de los Bovinos/diagnóstico , Sistema Nervioso Central , Enfermedades del Sistema Nervioso Central/veterinaria , Aprendizaje Automático , Curva ROC , Programas Informáticos
6.
Vet Sci ; 9(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36136672

RESUMEN

Fetlock joint angle (FJA) pattern is a sensitive indicator of lameness. The first aim of this study is to describe a network of inertial measurement units system (IMUs) for quantifying FJA simultaneously in all limbs. The second aim is to evaluate the accuracy of IMUs for quantifying the sagittal plane FJA overground in comparison to bi-dimensional (2-D) optical motion capture (OMC). 14 horses (7 free from lameness and 7 lame) were enrolled and analyzed with both systems at walk and trot on a firm surface. All enrolled horses were instrumented with 8 IMUs (a pair for each limb) positioned at the dorsal aspect of the metacarpal/metatarsal bone and pastern and acquiring data at 200 Hz. Passive markers were glued on the center of rotation of carpus/tarsus, fetlock, and distal interphalangeal joint, and video footages were captured at 60 Hz and digitalized for OMC acquisition. The IMU system accuracy was reported as Root Mean Square Error (RMSE) and Pearson Correlation Coefficient (PCC). The Granger Causality Test (GCT) and the Bland−Altman analysis were computed between the IMUs and OMC patterns to determine the agreement between the two systems. The proposed IMU system was able to provide FJAs in all limbs using a patented method for sensor calibration and related algorithms. Fetlock joint range of motion (FJROM) variability of three consecutive strides was analyzed in the population through 3-way ANOVA. FJA patterns quantified by IMUs demonstrated high accuracy at the walk (RMSE 8.23° ± 3.74°; PCC 0.95 ± 0.03) and trot (RMSE 9.44° ± 3.96°; PCC 0.96 ± 0.02) on both sound (RMSE 7.91° ± 3.19°; PCC 0.97 ± 0.03) and lame horses (RMSE 9.78° ± 4.33°; PCC 0.95 ± 0.03). The two systems' measurements agreed (mean bias around 0) and produced patterns that were in temporal agreement in 97.33% of the cases (p < 0.01). The main source of variability between left and right FJROM in the population was the presence of lameness (p < 0.0001) and accounted for 28.46% of this total variation. IMUs system accurately quantified sagittal plane FJA at walk and trot in both sound and lame horses.

7.
IEEE J Biomed Health Inform ; 26(5): 2052-2062, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35298388

RESUMEN

Modeling and forecasting the spread of COVID-19 remains an open problem for several reasons. One of these concerns the difficulty to model a complex system at a high resolution (fine-grained) level at which the spread can be simulated by taking into account individual features. Agent-based modeling usually needs to find an optimal trade-off between the resolution of the simulation and the population size. Indeed, modeling single individuals usually leads to simulations of smaller populations or the use of meta-populations. In this article, we propose a solution to efficiently model the Covid-19 spread in Lombardy, themost populated Italian region with about ten million people. In particular, the model described in this paper is, to the best of our knowledge, the first attempt in literature to model a large population at the single-individual level. To achieve this goal, we propose a framework that implements: i. a scale-free model of the social contacts combining a sociability rate, demographic information, and geographical assumptions; ii. a multi-agent system relying on the actor model and the High-Performance Computing technology to efficiently implement ten million concurrent agents. We simulated the epidemic scenario from January to April 2020 and from August to December 2020, modeling the government's lockdown policies and people's mask-wearing habits. The social modeling approach we propose could be rapidly adapted for modeling future epidemics at their early stage in scenarios where little prior knowledge is available.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Control de Enfermedades Transmisibles , Humanos , Políticas , SARS-CoV-2 , Análisis de Sistemas
8.
Animals (Basel) ; 11(5)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069518

RESUMEN

Mathematical modelling is used in disease studies to assess the economical impacts of diseases, as well as to better understand the epidemiological dynamics of the biological and environmental factors that are associated with disease spreading. For an incurable disease such as Caprine Arthritis Encephalitis (CAE), this knowledge is extremely valuable. However, the application of modelling techniques to CAE disease studies has not been significantly explored in the literature. The purpose of the present work was to review the published studies, highlighting their scope, strengths and limitations, as well to provide ideas for future modelling approaches for studying CAE disease. The reviewed studies were divided into the following two major themes: Mathematical epidemiological modelling and statistical modelling. Regarding the epidemiological modelling studies, two groups of models have been addressed in the literature: With and without the sexual transmission component. Regarding the statistical modelling studies, the reviewed articles varied on modelling assumptions and goals. These studies modelled the dairy production, the CAE risk factors and the hypothesis of CAE being a risk factor for other diseases. Finally, the present work concludes with further suggestions for modelling studies on CAE.

9.
JMIR Med Inform ; 8(6): e16678, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32442149

RESUMEN

BACKGROUND: Frailty is one of the most critical age-related conditions in older adults. It is often recognized as a syndrome of physiological decline in late life, characterized by a marked vulnerability to adverse health outcomes. A clear operational definition of frailty, however, has not been agreed so far. There is a wide range of studies on the detection of frailty and their association with mortality. Several of these studies have focused on the possible risk factors associated with frailty in the elderly population while predicting who will be at increased risk of frailty is still overlooked in clinical settings. OBJECTIVE: The objective of our study was to develop predictive models for frailty conditions in older people using different machine learning methods based on a database of clinical characteristics and socioeconomic factors. METHODS: An administrative health database containing 1,095,612 elderly people aged 65 or older with 58 input variables and 6 output variables was used. We first identify and define six problems/outputs as surrogates of frailty. We then resolve the imbalanced nature of the data through resampling process and a comparative study between the different machine learning (ML) algorithms - Artificial neural network (ANN), Genetic programming (GP), Support vector machines (SVM), Random Forest (RF), Logistic regression (LR) and Decision tree (DT) - was carried out. The performance of each model was evaluated using a separate unseen dataset. RESULTS: Predicting mortality outcome has shown higher performance with ANN (TPR 0.81, TNR 0.76, accuracy 0.78, F1-score 0.79) and SVM (TPR 0.77, TNR 0.80, accuracy 0.79, F1-score 0.78) than predicting the other outcomes. On average, over the six problems, the DT classifier has shown the lowest accuracy, while other models (GP, LR, RF, ANN, and SVM) performed better. All models have shown lower accuracy in predicting an event of an emergency admission with red code than predicting fracture and disability. In predicting urgent hospitalization, only SVM achieved better performance (TPR 0.75, TNR 0.77, accuracy 0.73, F1-score 0.76) with the 10-fold cross validation compared with other models in all evaluation metrics. CONCLUSIONS: We developed machine learning models for predicting frailty conditions (mortality, urgent hospitalization, disability, fracture, and emergency admission). The results show that the prediction performance of machine learning models significantly varies from problem to problem in terms of different evaluation metrics. Through further improvement, the model that performs better can be used as a base for developing decision-support tools to improve early identification and prediction of frail older adults.

10.
Sci Rep ; 9(1): 15460, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664116

RESUMEN

Bovine viral diarrhea virus (BVDV) is one of the most important pathogens of cattle worldwide. BVDV-1 is widely distributed in Italy, while BVDV-2 has been detected occasionally. BVDV can be classified in two biotypes, cytopathic (CP) or noncytopathic (NCP). The characteristic of the virus is linked with the infection of a pregnant dam with a NCP strain: due to viral establishment before maturation of the fetal immune system the calf remains persistently infected (PI) and immunotolerant to the infecting BVDV strain. Thanks to their immunotolerance, PI animals represent a unique model to study the viral distribution and compartmentalization in absence of immunoresponse in vivo. In the present study, NGS sequencing was used to characterize the BVDV2 viral strain infecting a PI calf and to describe the viral quasispecies in tissues. Even if the consensus sequences obtained by all the samples were highly similar, quasispecies was described evaluating the presence and the frequency of variants among all the sequencing reads in each tissue. The results suggest a high heterogeneity of the infecting viral strain suggesting viral compartmentalization. The quasispecies analysis highlights the complex dynamics of viral population structure and can increase the knowledge about viral evolution in BVDV-2 persistently infected animals.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 2/genética , Genes Virales , Tolerancia Inmunológica , Animales , Diarrea Mucosa Bovina Viral/inmunología , Diarrea Mucosa Bovina Viral/virología , Bovinos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA