Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biofabrication ; 16(1)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37956452

RESUMEN

Brain organoid technology has transformed both basic and applied biomedical research and paved the way for novel insights into developmental processes and disease states of the human brain. While the use of brain organoids has been rapidly growing in the past decade, the accompanying bioengineering and biofabrication solutions have remained scarce. As a result, most brain organoid protocols still rely on commercially available tools and culturing platforms that had previously been established for different purposes, thus entailing suboptimal culturing conditions and excessive use of plasticware. To address these issues, we developed a 3D printing pipeline for the fabrication of tailor-made culturing platforms for fluidically connected but spatially separated brain organoid array culture. This all-in-one platform allows all culturing steps-from cellular aggregation, spheroid growth, hydrogel embedding, and organoid maturation-to be performed in a single well plate without the need for organoid manipulation or transfer. Importantly, the approach relies on accessible materials and widely available 3D printing equipment. Furthermore, the developed design principles are modular and highly customizable. As such, we believe that the presented technology can be easily adapted by other research groups and fuel further development of culturing tools and platforms for brain organoids and other 3D cellular systems.


Asunto(s)
Investigación Biomédica , Encéfalo , Humanos , Organoides , Bioingeniería , Impresión Tridimensional
2.
STAR Protoc ; 4(1): 102041, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36853668

RESUMEN

Tissue clearing is commonly used for whole-brain imaging but seldom used for brain slices. Here, we present a simple protocol to slice, immunostain, and clear sections of adult rat brains for subsequent high-resolution confocal imaging. The protocol does not require toxic reagents or specialized equipment. We also provide instructions for culturing of rat brain slices free floating on permeable culture inserts, maintained in regular CO2 incubators, and handled only at media change.


Asunto(s)
Encéfalo , Ratas , Animales , Encéfalo/diagnóstico por imagen , Microscopía Confocal
4.
Nat Commun ; 12(1): 7302, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911939

RESUMEN

Three-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain. However, despite significant advancements in the field, the use of brain organoids can be limited by issues of reproducibility and incomplete maturation which was also observed in this study. We therefore designed bioengineered ventral midbrain organoids supported by recombinant spider-silk microfibers functionalized with full-length human laminin. We show that silk organoids reproduce key molecular aspects of dopamine neurogenesis and reduce inter-organoid variability in terms of cell type composition and dopamine neuron formation.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Dopamina/metabolismo , Neuronas/metabolismo , Organoides/crecimiento & desarrollo , Encéfalo/citología , Humanos , Neurogénesis , Neuronas/citología , Organoides/citología , Organoides/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma
5.
Cells ; 9(11)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182669

RESUMEN

Glial progenitor cells are widely distributed in brain parenchyma and represent a suitable target for future therapeutic interventions that generate new neurons via in situ reprogramming. Previous studies have shown successful reprogramming of mouse glia into neurons whereas the conversion of human glial cells remains challenging due to the limited accessibility of human brain tissue. Here, we have used a recently developed stem cell-based model of human glia progenitor cells (hGPCs) for direct neural reprogramming by overexpressing a set of transcription factors involved in GABAergic interneuron fate specification. GABAergic interneurons play a key role in balancing excitatory and inhibitory neural circuitry in the brain and loss or dysfunction of these have been implicated in several neurological disorders such as epilepsy, schizophrenia, and autism. Our results demonstrate that hGPCs successfully convert into functional induced neurons with postsynaptic activity within a month. The induced neurons have properties of GABAergic neurons, express subtype-specific interneuron markers (e.g. parvalbumin) and exhibit a complex neuronal morphology with extensive dendritic trees. The possibility of inducing GABAergic interneurons from a renewable in vitro hGPC system could provide a foundation for the development of therapies for interneuron pathologies.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Neuroglía/metabolismo , Células Madre/metabolismo , Diferenciación Celular , Citometría de Flujo , Humanos
6.
Stem Cell Reports ; 15(4): 869-882, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32976765

RESUMEN

Human glial progenitor cells (hGPCs) are promising cellular substrates to explore for the in situ production of new neurons for brain repair. Proof of concept for direct neuronal reprogramming of glial progenitors has been obtained in mouse models in vivo, but conversion using human cells has not yet been demonstrated. Such studies have been difficult to perform since hGPCs are born late during human fetal development, with limited accessibility for in vitro culture. In this study, we show proof of concept of hGPC conversion using fetal cells and also establish a renewable and reproducible stem cell-based hGPC system for direct neural conversion in vitro. Using this system, we have identified optimal combinations of fate determinants for the efficient dopaminergic (DA) conversion of hGPCs, thereby yielding a therapeutically relevant cell type that selectively degenerates in Parkinson's disease. The induced DA neurons show a progressive, subtype-specific phenotypic maturation and acquire functional electrophysiological properties indicative of DA phenotype.


Asunto(s)
Reprogramación Celular , Neuronas Dopaminérgicas/citología , Células Madre Fetales/citología , Mesencéfalo/citología , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas Dopaminérgicas/metabolismo , Células Madre Fetales/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Modelos Biológicos , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA