Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(8): 3072-3082, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36793207

RESUMEN

It has been shown that the use of conformationally pH-switchable lipids can drastically enhance the cytosolic drug delivery of lipid vesicles. Understanding the process by which the pH-switchable lipids disturb the lipid assembly of nanoparticles and trigger the cargo release is crucial to optimize the rational design of pH-switchable lipids. Here, we gather morphological observations (FF-SEM, Cryo-TEM, AFM, confocal microscopy), physicochemical characterization (DLS, ELS), as well as phase behavior studies (DSC, 2H NMR, Langmuir isotherm, and MAS NMR) to propose a mechanism of pH-triggered membrane destabilization. We demonstrate that the switchable lipids are homogeneously incorporated with other co-lipids (DSPC, cholesterol, and DSPE-PEG2000) and promote a liquid-ordered phase insensitive to temperature variation. Upon acidification, the protonation of the switchable lipids triggers a conformational switch altering the self-assembly properties of lipid nanoparticles. These modifications do not lead to a phase separation of the lipid membrane; however, they cause fluctuations and local defects, which result in morphological changes of the lipid vesicles. These changes are proposed to affect the permeability of vesicle membrane, triggering the release of the cargo encapsulated in the lipid vesicles (LVs). Our results confirm that pH-triggered release does not require major morphological changes, but can result from small defects affecting the lipid membrane permeability.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lípidos , Lípidos/química , Fenómenos Químicos , Conformación Molecular , Permeabilidad
2.
Proc Natl Acad Sci U S A ; 120(3): e2208377120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36630450

RESUMEN

Nanoparticles or drug carriers which can selectively bind to cells expressing receptors above a certain threshold surface density are very promising for targeting cells overexpressing specific receptors under pathological conditions. Simulations and theoretical studies have suggested that such selectivity can be enhanced by functionalizing nanoparticles with a bimodal polymer monolayer (BM) containing shorter ligated chains and longer inert protective chains. However, a systematic study of the effect of these parameters under tightly controlled conditions is still missing. Here, we develop well-defined and highly specific platforms mimicking particle-cell interface using surface chemistry to provide a experimental proof of such selectivity. Using surface plasmon resonance and atomic force microscopy, we report the selective adsorption of BM-functionalized nanoparticles, and especially, a significant enhanced selective behavior by using a BM with longer protective chains. Furthermore, a model is also developed to describe the repulsive contribution of the protective brush to nanoparticle adsorption. This model is combined with super-selectivity theory to support experimental findings and shows that the observed selectivity is due to the steric energy barrier which requires a high number of ligand-receptor bonds to allow nanoparticle adsorption. Finally, the results show how the relative length and molar ratio of two chains can be tuned to target a threshold surface density of receptors and thus lay the foundation for the rational design of BM-functionalized nanoparticles for selective targeting.


Asunto(s)
Nanopartículas , Nanopartículas/química , Polímeros , Ligandos , Modelos Teóricos , Resonancia por Plasmón de Superficie
3.
Langmuir ; 37(38): 11212-11221, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34523940

RESUMEN

Dual-responsive poly-(N-isopropylacrylamide) (PNIPAM) microgels surface-functionalized with polyethylene glycol (PEG) or poly-2-dimethylaminoethyl methacrylate (PDMAEMA) were developed to enable the swelling behavior and surface properties of the microgels to be tuned independently. The thermo-triggered swelling and pH-triggered surface properties of the microgels were investigated in aqueous suspensions using dynamic light scattering and on substrates using the surface forces apparatus. Grafting polymer chains on the microgel surface did not impede the thermo-triggered swelling behavior of the microgels in suspensions and immobilized on substrates. An unprecedented decoupling of the swelling behavior and surface properties could be obtained. More particularly, the thermo-triggered swelling behavior of the PNIPAM underlying microstructure could be tuned below and above the phase transition temperature with no change in the surface potential and adhesion provided by the surface non-responsive PEG.

4.
Langmuir ; 35(48): 15723-15728, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31566381

RESUMEN

We describe how a long-range repulsive interaction can surreptitiously modify the effective geometry of approaching compliant surfaces, with significant consequences on friction. We investigated the behavior under shear and compression of mica surfaces coated with poly(N-isopropylacrylamide) pNIPAM-based cationic microgels. We show that local surface deformations as small as a few nanometers must be considered to understand the response of such surfaces under compression and shear, in particular when the range of action of normal and friction forces are significantly different, as is often the case for macromolecular lubrication. Under these conditions, a subtle interplay between normal forces and surface compliance may significantly reduce friction increment by limiting the minimum approach of the surfaces under pressure. We found that stiffening of compressed microgels confined in the region of closest approach make it increasingly difficult to reduce the gap between the mica surfaces, limiting the deformation of microgels distant from the contact apex and their contribution to global friction while increasing the effective contact radius. These findings reveal a simple mechanism for a robust control of lubrication: by properly tuning the stiffness and geometry of the interacting bodies, for an ad hoc long-range interaction, the growth of friction with applied normal load can be significantly hindered. Thus, substrate compliance is as significant as surface interaction in the design of low friction, long life tribological systems.

5.
Langmuir ; 35(48): 15592-15604, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31550893

RESUMEN

The tribological properties of two novel biomimetic multihierarchical polymers, synthesized by covalently linking single bottlebrush polymers onto a hyaluronic acid (HA) backbone, were investigated in the boundary lubrication regime using the surface forces apparatus. The polymers were immobilized on flat substrates, and their lubrication properties and wear resistance were investigated in aqueous media in the absence of a polymer reservoir (i.e., no free polymer chains in the surrounding medium) in order to better reveal the underlying mechanism of surface-attached biomimetic polymers. The effects of composition, structure, and, more particularly, surface attachment (physisorbed vs chemisorbed) on the tribological properties were investigated and compared with other biomimicking systems reported in the literature. The covalently surface attached bottlebrushes allowed wear resistance between sliding surfaces to be significantly improved, compared to physisorbed bottlebrushes, with a constant coefficient of friction (10-1) of up to few tens of MPa. The results confirm that surface-attached bottlebrushes on their own are not responsible for the extremely low friction often reported in the literature or found in articular joints. Moreover, the study confirmed that the irreversible attachment of bottlebrushes, or multihierarchical polymer layers, to surfaces is crucial to improving wear resistance between sliding surfaces in aqueous media.

6.
Langmuir ; 35(48): 15605-15613, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31408351

RESUMEN

In this work, we have investigated the behavior under shear and compression of mica surfaces coated with poly(N-isopropylacrylamide) cationic microgels. We have observed the emergence of velocity dependent, shear-induced normal forces, which can be large enough to entrain a fluid film that separates the surfaces out of contact, driving the dynamic system from conditions of boundary to hydrodynamic lubrication. By implementing a feedback-loop control on the surface separation, we were able to quantify the magnitude of the lift force as a function of the surface separation and driving speed. Our results illustrate how elastohydrodynamic effects can play an important role in the lubrication of compliant surfaces, providing pathways for control of friction and wear.

7.
Langmuir ; 33(15): 3610-3623, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28296414

RESUMEN

Normal and friction forces between immobilized two-dimensional (2D) homogeneous non-close-packed colloidal arrays made of different particles are compared in aqueous media. Soft pH-responsive (microgels) and nonresponsive hard (silica) particles of different sizes were used to create the 2D arrays. The results show that the friction of soft responsive structured layers can be successfully modulated by varying the pH, with a friction coefficient varying by nearly 3 orders of magnitude (10-2 to 1). This important change in lubricating properties is mainly correlated with the particle swelling behavior, i.e., the friction coefficient decreasing exponentially with an increase in the swelling ratio regardless of the size, surface coverage, and degree of ionization of the particles. In addition, the robustly attached microgel particles were able to sustain high pressure (up to 200 atm) without significant surface damage. The 2D arrays of nonresponsive hard particles also gave rise to a very low friction coefficient (µ ≈ 10-3) under similar experimental conditions and could sustain a larger pressure without damage (≤600 atm). The low friction dissipation observed between the hard arrays resulted from a rolling mechanism. Even though rolling requires nonimmobilized particles on the substrates, the results show the importance of attaching a certain proportion of particles on the surfaces to reduce friction.

8.
Biomaterials ; 113: 230-242, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27825070

RESUMEN

As double stranded, single stranded siRNA (ss-siRNA) has demonstrated gene silencing activity but still requires efficient carriers to reach its cytoplasmic target. To better understand the fundamental aspect driving the complexation of ss-siRNA with nanocarriers, the interactions between surfaces of various compositions across a ss-siRNA solution were investigated using the Surface Forces Apparatus. The results show that ss-siRNA can adsorb onto hydrophilic (positively and negatively charged) as well as on hydrophobic substrates suggesting that the complexation can occur through hydrophobic interactions and hydrogen bonding in addition to electrostatic interactions. Moreover, the binding strength and the conformation of ss-siRNA depend on the nature of the interactions between the ss-siRNA and the surfaces. The binding of ss-siRNA with nanocarriers, such as micelles or liposomes through non-electrostatic interactions was also evidenced by a SYBR® Gold cyanine dye. We evidenced the presence of interactions between the dye and oligonucleotides already complexed to non-cationic nanovectors biasing the quantification of the encapsulation. These results suggest that non-electrostatic interactions could be exploited to complement electrostatic interactions in the design of nanocarriers. In particular, the different highlighted interactions can be used to complex ss-siRNA with uncharged or anionic carriers which are related to lower toxicity compared to cationic carriers.


Asunto(s)
Liposomas/química , Micelas , ARN Interferente Pequeño/administración & dosificación , Adsorción , Sitios de Unión , Cationes/química , Interacciones Hidrofóbicas e Hidrofílicas , Conformación de Ácido Nucleico , ARN Interferente Pequeño/química , Electricidad Estática
9.
ACS Appl Mater Interfaces ; 7(27): 14552-6, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26120929

RESUMEN

A biofunctionalized graphene oxide (GO) nanosheet with improved physicochemical properties is useful for electrocatalysis and sensor development. Herein, a new class of functionalized GO with a chemically anchored biomolecule glucosamine is developed. Structural and chemical analyses confirm the glucosamine anchoring. Ultraviolet irradiation transforms the surface chemistry of GO. Glucosamine-anchored GO nanosheets exhibit improved cyclic voltammetric and amperometric sensing activity toward the model redox probe, ruthenium(II) and N-acetylneuraminic acid, respectively. The biomolecular anchoring and ultraviolet irradiation helped to tune and enhance the properties of GO, which may find multiple applications in optimizing sensor platforms.


Asunto(s)
Conductometría/instrumentación , Glucosamina/química , Grafito/química , Membranas Artificiales , Nanopartículas/química , Óxidos/química , Conductividad Eléctrica , Electrodos , Diseño de Equipo , Análisis de Falla de Equipo , Glucosamina/efectos de la radiación , Grafito/efectos de la radiación , Ensayo de Materiales , Nanopartículas/efectos de la radiación , Nanopartículas/ultraestructura , Óxidos/efectos de la radiación , Rayos Ultravioleta
10.
J Mater Chem B ; 3(4): 665-672, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32262349

RESUMEN

Hybrid nanoparticles (NPs) integrated with dye molecules have attracted interest for biomolecular detection, due to their effortless fabrication, timely operation, controllable specific recognition and low-cost. In this study, hybrid core-shell NPs made of a metal-dye complex (AgNPs@[Ru(bpy)3]2+) core and a chitosan (CS) shell exhibiting a selective fluorescence quenching effect were successfully prepared using a cost-effective wet-chemical approach. The physico-chemical properties of NPs were determined by spectroscopy and light scattering measurements. The bio-affinity of the AgNPs@[Ru(bpy)3]2+/CS was evaluated in aqueous media using sialic acid (SA) as the target molecule in the presence of different monosaccharides and anionic biomolecules as interferents. A significant fluorescence quenching of hybrid NPs was observed in aqueous solutions of SA with interferents, while no significant quenching effect was detected in SA-free interferent solutions. The selective binding of SA to the particles resulted from favorable electrostatic interactions and inter-molecular hydrogen bonding with the functional groups of CS. The hybrid NP system displayed a good sensitivity for SA with a detection limit of 5.1 nM and a concentration dependent fluorescence quenching for SA concentrations ranging from 25 nM to 3.2 µM. This hybrid NP system represents a promising alternative probe for detecting sialic acid in complex samples.

11.
Langmuir ; 29(42): 12936-49, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24053315

RESUMEN

We have studied the adsorption and lubricant properties of a multifunctional triblock copolymer poly(L-lysine)-b-poly(acrylic acid)-b-poly(L-lysine). In particular, we investigated the nature of the layer adsorbed under different conditions of polymer and salt concentration and the lubricant properties of the polymer layer before and after its chemical cross-linking by bridging the poly(acrylic acid) blocks. We found that the amount of polymer adsorbed is controlled by the ionic strength and the polymer concentration in the solution. In all cases, the self-assembled polymer layer is a poor lubricant before cross-linking, but the cohesion and load-carrying ability of the layer are substantially improved by this reaction. However, the chemically cross-linked coating has a limited deformation capacity as a consequence of its permanent network nature, and irreversible damage is observed after excessive strain of the film.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Polímeros/química , Adsorción , Concentración Osmolar , Tamaño de la Partícula , Propiedades de Superficie
13.
J Phys Chem B ; 114(30): 9721-8, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20614943

RESUMEN

Static and dynamic interaction forces between two thermosensitive polymeric nanoparticle monolayers grafted onto mica surfaces and immersed in water were studied using a surface forces apparatus. The polymeric nanoparticles (NPs) were made of N,N-diethylacrylamide and had a hydrodynamic diameter of ca. 780 nm at 20 degrees C in aqueous suspension. They were irreversibly grafted onto chemically modified mica surfaces at a constant surface coverage of 2.6 NPs/mum(2). The measured normal forces between two opposing NP monolayers were found to be strongly dependent on the temperature. At temperatures lower than the lower critical solution temperature (LCST), the grafted NPs were swollen, and the normal interaction forces between the two NP monolayers were repulsive. Above the LCST, the NPs collapsed, and attractive forces between the NP layers were measured. The swollen NPs were found to exhibit very low friction forces compared to the collapsed ones. The effect of the sliding velocity on the shear stress was investigated, and the results are in agreement with the so-called adhesive friction model developed for rubber friction. Our results suggest that the water content in the contact area and the interdiffusion of polymer chains are important parameters in determining the friction between polymer-bearing surfaces.


Asunto(s)
Nanopartículas/química , Agua/química , Silicatos de Aluminio/química , Cinética , Propiedades de Superficie , Temperatura
14.
Langmuir ; 25(9): 5313-21, 2009 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-19256467

RESUMEN

The controlled grafting density of poly(tert-butyl acrylate) was studied on OH-activated mica substrates via surface-initiated atom-transfer radical polymerization (ATRP). By properly adjusting parameters such as the immobilization reaction time and the concentration of an ATRP initiator, a wide range of initiator surface coverages and hence polymer densities on mica were possible. The covalently immobilized initiator successfully promoted the polymerization of tert-butyl acrylate on mica surfaces. The resulting polymer layer thickness was measured by AFM using a step-height method. Linear relationships of the polymer thickness with respect to the molecular weight of the free polymer and with respect to the monomer conversion were observed, suggesting that ATRP is well controlled and relatively densely end-grafted layers were obtained. The polymer grafting density controlled by adjusting the initiator surface coverage was confirmed by the polymer layer swelling capacity and film thickness measurements.


Asunto(s)
Silicatos de Aluminio/química , Radical Hidroxilo/química , Polímeros/química , Microscopía de Fuerza Atómica , Estructura Molecular , Peso Molecular , Propiedades de Superficie
15.
J Phys Chem B ; 112(39): 12208-16, 2008 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-18774849

RESUMEN

Normal and lateral forces between two opposing monolayers of grafted polymer nanoparticles (NPs) were measured using the Surface Forces Apparatus in a humid atmosphere. The NPs made of N, N-diethylacrylamide and 2-hydroxyethyl methacrylate have a hydrodynamic diameter of ca. 660 nm at 25 degrees C. The effect of surface roughness was studied by creating surface asperities using different NP grafting densities ranging from 0.41 to 2.63 NPs/mum (2). An increase in the NPs grafting density gave rise to an increase in surface roughness and to a deformation of the nanoparticles caused by the lateral pressure between neighboring particles. An elastoplastic behavior of the nanoparticles was observed for large grafting densities, while a purely elastic behavior was observed for small grafting densities. The lateral forces measured between two opposing NP monolayers sliding past each other followed Amontons' law for all grafting densities. The friction coefficient between the surfaces appeared to increase significantly with an increase in surface roughness, which was inherent to an increase in the elastoplastic behavior of the NP monolayers.


Asunto(s)
Silicatos de Aluminio/química , Nanopartículas/química , Aire , Fricción , Glutaral/química , Humedad , Cinética , Polímeros/química , Propiedades de Superficie
16.
Bioconjug Chem ; 19(10): 2030-9, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18803413

RESUMEN

New active particulate polymeric vectors based on branched polyester copolymers of hydroxy-acid and allyl glycidyl ether were developed to target drugs to the inflammatory endothelial cell surface. The hydroxyl and carboxyl derivatives of these polymers allow grafting of ligand molecules on the polyester backbones at different densities. A known potent nonselective selectin ligand was selected and synthesized using a new scheme. This synthesis allowed the grafting of the ligand to the polyester polymers, preserving its binding activity as assessed by docking simulations. Selectin expression on human umbilical cord vascular endothelial cells (HUVEC) was induced with the pro-inflammatory bacterial lipopolysaccharide (LPS) or with the nonselective inhibitor of nitric oxide synthase L-NAME. Strong adhesion of the ligand decorated nanoparticles was evidenced in vitro on activated HUVEC. Binding of nanoparticles bearing ligand molecules could be efficiently inhibited by prior incubation of cells with free ligand, demonstrating that adhesion of the nanoparticles is mediated by specific interaction between the ligand and the selectin receptors. These nanoparticles could be used for specific drug delivery to the activated vascular endothelium, suggesting their application in the treatment of diseases with an inflammatory component such as rheumatoid arthritis and cancer.


Asunto(s)
Portadores de Fármacos/metabolismo , Células Endoteliales/metabolismo , Selectinas/metabolismo , Animales , Ácidos Carboxílicos/química , Línea Celular , Membrana Celular/metabolismo , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/toxicidad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Humanos , Ácido Láctico/química , Ligandos , Modelos Moleculares , Nanopartículas/química , Especificidad de Órganos , Poliésteres , Polímeros/química , Ratas , Especificidad por Sustrato , Propiedades de Superficie
17.
Langmuir ; 24(16): 8678-87, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18642855

RESUMEN

Normal and shear forces were measured as a function of surface separation, D, between hydrophobized mica surfaces bearing layers of a hydrophobic-polyelectrolytic diblock copolymer, poly(methyl methacrylate)- block-poly(sodium sulfonated glycidyl methacrylate) copolymer (PMMA- b-PSGMA). The copolymers were attached to each hydrophobized surface by their hydrophobic PMMA moieties with the nonadsorbing polyelectrolytic PSGMA tails extending into the aqueous medium to form a polyelectrolyte brush. Following overnight incubation in 10 (-4) w/v aqueous solution of the copolymer, the strong hydrophobic attraction between the hydrophobized mica surfaces across water was replaced by strongly repulsive normal forces between them. These were attributed to the osmotic repulsion arising from the confined counterions at long-range, together with steric repulsion between the compressed brush layers at shorter range. The corresponding shear forces on sliding the surfaces were extremely low and below our detection limit (+/-20-30 nN), even when compressed down to a volume fraction close to unity. On further compression, very weak shear forces (130 +/- 30 nN) were measured due to the increase in the effective viscous drag experienced by the compressed, sliding layers. At separations corresponding to pressures of a few atmospheres, the shearing motion led to abrupt removal of most of the chains out of the gap, and the surfaces jumped into adhesive contact. The extremely low frictional forces between the charged brushes (prior to their removal) is attributed to the exceptional resistance to mutual interpenetration displayed by the compressed, counterion-swollen brushes, together with the fluidity of the hydration layers surrounding the charged, rubbing polymer segments.

18.
Langmuir ; 24(7): 3280-8, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18303926

RESUMEN

We investigated the effect of physical and chemical modifications of mica surfaces induced by water vapor-based plasma treatments on the stability of silanols and grafted alkylsilane monolayers. The plasma-activated substrates were characterized using XPS, TOF-SIMS, and contact angle measurements. They revealed a large surface coverage of silanol groups (Si-OH) and a loss of aluminum atoms compared to freshly cleaved mica surfaces. The stability of plasma-induced silanol groups was investigated by contact angle measurements using ethylene glycol as a probe liquid. The Si-OH surface coverage decreased rapidly under vacuum or thermal treatment to give rise to hydrophobic dehydrated surfaces. The stability of end-grafted monofunctionalized n-alkylsilanes was investigated in different solvents and at different pH using water contact angle measurements. The degrafting of alkylsilanes from the activated mica was promoted in acidic aqueous solutions. This detachment was associated with the hydrolysis of covalent bonds between the alkylsilanes and the mica surface. The monolayer stability was enhanced by increasing the length of the alkyl chains that probably act as a hydrophobic protective layer against hydrolysis reactions. Stable alkylsilane monolayers in water with pH greater than 5.5 were obtained on mica surfaces activated at low plasma pressure. We attributed this stability to the loss of surface Al atoms induced by the plasma treatment.


Asunto(s)
Silicatos de Aluminio/química , Silanos/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Agua
19.
Langmuir ; 24(4): 1550-9, 2008 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-18225926

RESUMEN

Polyelectrolyte brushes were built on mica by anchoring polystyrene-poly(acrylic acid) (PS-b-PAA) diblock copolymers at a controlled surface density in a polystyrene monolayer covalently attached to OH-activated mica surfaces. Compared to physisorbed polymer brushes, these irreversibly attached charged brushes allow the polymer grafting density to remain constant upon changes in environmental conditions (e.g., pH, salt concentration, compression, and shear). The normal interaction and friction forces as a function of surface separation distance and at different concentrations of added salt (NaCl) were investigated using a surface forces apparatus. The interaction force profiles were completely reversible both on loading and receding and were purely repulsive. For a constant polymer grafting density, the influence of the polyelectrolyte charges and the Debye screening effect on the overall interaction forces was investigated. The experimental interaction force profiles agree very well with scaling models developed for neutral and charged polymer brushes. The variation of the friction force between two PAA brushes in motion with respect to each other as a function of surface separation distance appeared to be similar to that observed with neutral brushes. This similarity suggests that the increase in friction is associated with an increase in mutual interpenetration upon compression as observed with neutral polymers. The effect of the PAA charges and added ions was more significant on the repulsive normal forces than on the friction forces. The reversible characteristics of the normal force profiles and friction measurements confirmed the strong attachment of the PAA brushes to the mica substrate. High friction coefficients (ca 0.3) were measured at relatively high pressures (40 atm) with no surface damage or polymer removal.


Asunto(s)
Acrilatos/química , Electrólitos/química , Poliestirenos/química , Silicatos de Aluminio/química , Fricción , Concentración de Iones de Hidrógeno , Estructura Molecular , Cloruro de Sodio/química , Propiedades de Superficie
20.
Langmuir ; 24(2): 379-82, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18076200

RESUMEN

Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.


Asunto(s)
Silicatos de Aluminio/química , Radical Hidroxilo/química , Polímeros/química , Microscopía de Fuerza Atómica , Espectrometría de Masa de Ion Secundario , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA