Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Remote Sens Appl ; 26: 100757, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36281297

RESUMEN

The stringent COVID-19 lockdown measures in 2020 significantly impacted people's mobility and air quality worldwide. This study presents an assessment of the impacts of the lockdown and the subsequent reopening on air quality and people's mobility in the United Arab Emirates (UAE). Google's community mobility reports and UAE's government lockdown measures were used to assess the changes in the mobility patterns. Time-series and statistical analyses of various air pollutants levels (NO2, O3, SO2, PM10, and aerosol optical depth-AOD) obtained from satellite images and ground monitoring stations were used to assess air quality. The levels of pollutants during the initial lockdown (March to June 2020) and the subsequent gradual reopening in 2020 and 2021 were compared with their average levels during 2015-2019. During the lockdown, people's mobility in the workplace, parks, shops and pharmacies, transit stations, and retail and recreation sectors decreased by about 34%-79%. However, the mobility in the residential sector increased by up to 29%. The satellite-based data indicated significant reductions in NO2 (up to 22%), SO2 (up to 17%), and AOD (up to 40%) with small changes in O3 (up to 5%) during the lockdown. Similarly, data from the ground monitoring stations showed significant reductions in NO2 (49% - 57%) and PM10 (19% - 64%); however, the SO2 and O3 levels showed inconsistent trends. The ground and satellite-based air quality levels were positively correlated for NO2, PM10, and AOD. The data also demonstrated significant correlations between the mobility and NO2 and AOD levels during the lockdown and recovery periods. The study documents the impacts of the lockdown on people's mobility and air quality and provides useful data and analyses for researchers, planners, and policymakers relevant to managing risk, mobility, and air quality.

2.
Environ Sci Pollut Res Int ; 29(2): 2613-2628, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34374020

RESUMEN

Municipal solid waste is typically managed in developing countries through various disposal methods, such as sanitary landfills or dumpsites. Alternatively, waste to energy (WTE) systems have been recently adopted to provide sustainable waste management and diversify the energy mix. The abundance of remotely sensed datasets and derivatives, along with the rapid development of artificial intelligence, can offer an effective solution for WTE site selection. In this study, an analytical hierarchy process (AHP)-based framework supported by multiple machine learning algorithms (gradient boosted tree (GBT), decision tree (DT), and support vector machines (SVMs)) was established to explore the optimum location for WTE facilities. Various social, legal, environmental, economic, morphological, and land cover parameters were considered under 11 thematic geospatial raster layers. The proposed framework was applied to the 1.5-million-capita city of Sharjah, United Arab Emirates. A novel approach was developed to incorporate Gaussian dispersion modeling for the expected air pollution emissions from a WTE facility. The results showed that the accuracy performance sequence of the algorithms was 94.6, 93.9, and 91.8% for GBT, DT, and SVM, respectively. It was found that the distance from existing landfills had the most critical impact on the optimum location of the WTE facility, followed by the distance from coastline and elevation. The AHP consistency check revealed an acceptable overall criteria consistency index and the ratio of 0.0344 and 0.019, respectively. The results showed that 16.6% of Sharjah was considered extremely highly suitable areas. This research supports decision-makers in developing local guidelines for siting WTE facilities and determining the most suitable locations for such projects.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Inteligencia Artificial , Sistemas de Información Geográfica , Aprendizaje Automático , Residuos Sólidos , Instalaciones de Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA