Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(2): e2311059120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38170747

RESUMEN

Atomic force microscopy with a CO-functionalized tip can be used to directly image the internal structure of a planar molecule and to characterize chemical bonds. However, hydrogen atoms usually cannot be directly observed due to their small size. At the same time, these atoms are highly important, since they can direct on-surface chemical reactions. Measuring in-plane interactions at the sides of PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) molecules with lateral force microscopy allowed us to directly identify hydrogen atoms via their repulsive signature, which we confirmed with a model incorporating radially symmetric atomic interactions. Additional features were observed in the force data and could not be explained by H-bonding of the CO tip with the PTCDA sides. Instead, they are caused by electrostatic interaction of the large dipole of the metal apex, which we verified with density functional theory. This calculation allowed us to estimate the strength of the dipole at the metal tip apex. To further confirm that this dipole generally affects measurements on weakly polarized systems, we investigated the archetypical surface adsorbate of a single CO molecule. We determined the radially symmetric atomic interaction to be valid over a large solid angle of 5.4 sr, corresponding to 82°. We therefore find that in both the PTCDA and CO systems, the underlying interaction preventing direct observations of H-bonding and causing a collapse of the radially symmetric model is the dipole at the metal apex, which plays a significant role when approaching closer than standard imaging heights.

2.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010157

RESUMEN

The qPlus sensor allows for the simultaneous operation of scanning tunneling microscopy (STM) and atomic force microscopy (AFM). When operating a combined qPlus sensor STM/AFM at large tunneling currents, a hitherto unexplained tunneling current-induced cross coupling can occur, which has already been observed decades ago. Here, we study this phenomenon both theoretically and experimentally; its origin is voltage drops on the order of µV that lead to an excitation or a damping of the oscillation, depending on the sign of the current. Ideally, the voltage drops would be phase-shifted by π/2 with respect to a proper phase angle for driving and would, thus, not be a problem. However, intrinsic RC components in the current wiring lead to a phase shift that does enable drive or damping. Our theoretical model fully describes the experimental findings, and we also propose a way to prevent current-induced excitation or damping.

3.
J Chem Phys ; 159(17)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37909458

RESUMEN

Atomic force microscopy (AFM) that can be simultaneously performed with scanning tunneling microscopy (STM) using metallic tips attached to self-sensing quartz cantilevers (qPlus sensors) has advanced the field of surface science by allowing for unprecedented spatial resolution under ultrahigh vacuum conditions. Performing simultaneous AFM and STM with atomic resolution in an electrochemical cell offers new possibilities to locally image both the vertical layering of the interfacial water and the lateral structure of the electrochemical interfaces. Here, a combined AFM/STM instrument realized with a qPlus sensor and a home-built potentiostat for electrochemical applications is presented. We demonstrate its potential by simultaneously imaging graphite with atomic resolution in acidic electrolytes. Additionally, we show its capability to precisely measure the interfacial solvent layering along the surface normal as a function of the applied potential.

4.
Phys Rev Lett ; 131(14): 148001, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37862665

RESUMEN

The pervasive phenomenon of friction has been studied at the nanoscale via a controlled manipulation of single atoms and molecules with a metallic tip, which enabled a precise determination of the static friction force necessary to initiate motion. However, little is known about the atomic dynamics during manipulation. Here, we reveal the complete manipulation process of a CO molecule on a Cu(110) surface at low temperatures using a combination of noncontact atomic force microscopy and density functional theory simulations. We found that an intermediate state, inaccessible for the far-tip position, is enabled in the reaction pathway for the close-tip position, which is crucial to understanding the manipulation process, including dynamic friction. Our results show how friction forces can be controlled and optimized, facilitating new fundamental insights for tribology.

5.
J Phys Chem B ; 127(31): 6949-6957, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37527455

RESUMEN

Surface-layer (S-layer) proteins form the outermost envelope in many bacteria and most archaea and arrange in two-dimensional quasicrystalline structures via self-assembly. We investigated S-layer proteins extracted from the archaeon Pyrobaculum aerophilium with a qPlus sensor-based atomic force microscope (AFM) in both liquid and ambient conditions and compared it to transmission electron microscopy (TEM) images under vacuum conditions. For AFM scanning, a next-generation liquid cell and a new protocol for creating long and sharp sapphire tips was introduced. Initial AFM images showed only layers of residual detergent molecules (sodium dodecyl sulfate, SDS), which are used to isolate the S-layer proteins from the cells. SDS was not visible in the TEM images, requiring more thorough sample preparation for AFM measurements. These improvements allowed us to resolve the crystallike structure of the S-layer samples with frequency-modulation AFM in both air and liquid.


Asunto(s)
Archaea , Glicoproteínas de Membrana , Microscopía de Fuerza Atómica/métodos , Microscopía Electrónica de Transmisión
6.
Beilstein J Nanotechnol ; 13: 1572-1577, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36628110

RESUMEN

When perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) is deposited on the Ag(111) surface at submonolayer coverage, it forms islands under which the native Shockley state of the Ag(111) surface can no longer be found. Previous work has shown that this state shifts upwards to form a new interface state starting at 0.6 V above the Fermi level, having properties of a two-dimensional electron gas (2DEG). We investigated mixed islands of PTCDA and copper phthalocyanine (CuPc) to study the change in the electronic state with the addition of an electron donor. We no longer observe a 2DEG state and instead identify states at 0.46 and 0.79 V. While one state appears in dI/dV images as an array of one-dimensional quantum wells, our analysis shows that this state does not act as a free electron gas and that the features are instead localized above individual PTCDA molecules.

7.
Rev Sci Instrum ; 92(4): 043703, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243447

RESUMEN

Frequency-modulation atomic force microscopy (AFM) with a qPlus sensor allows one to atomically resolve surfaces in a variety of environments ranging from low-temperature in ultra-high vacuum to ambient and liquid conditions. Typically, the tip is driven to oscillate vertically, giving a measure of the vertical force component. However, for many systems, the lateral force component provides valuable information about the sample. Measuring lateral and vertical force components simultaneously by oscillating vertically and laterally has so far only been demonstrated with relatively soft silicon cantilevers and optical detection. Here, we show that the qPlus sensor can be used in a biaxial mode with electrical detection by making use of the first flexural mode and the length extensional mode. We describe the necessary electrode configuration as well as the electrical detection circuit and compare the length extensional mode to the needle sensor. Finally, we show atomic resolution in ambient conditions of a mica surface and in ultra-high vacuum of a silicon surface. In addition to this, we show how any qPlus AFM setup can be modified to work as a biaxial sensor, allowing two independent force components to be recorded.

8.
Molecules ; 26(13)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34279408

RESUMEN

The nature of the chemical bond is important in all natural sciences, ranging from biology to chemistry, physics and materials science. The atomic force microscope (AFM) allows to put a single chemical bond on the test bench, probing its strength and angular dependence. We review experimental AFM data, covering precise studies of van-der-Waals-, covalent-, ionic-, metallic- and hydrogen bonds as well as bonds between artificial and natural atoms. Further, we discuss some of the density functional theory calculations that are related to the experimental studies of the chemical bonds. A description of frequency modulation AFM, the most precise AFM method, discusses some of the experimental challenges in measuring bonding forces. In frequency modulation AFM, forces between the tip of an oscillating cantilever change its frequency. Initially, cantilevers were made mainly from silicon. Most of the high precision measurements of bonding strengths by AFM became possible with a technology transfer from the quartz watch technology to AFM by using quartz-based cantilevers ("qPlus force sensors"), briefly described here.

9.
Beilstein J Nanotechnol ; 12: 517-524, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136327

RESUMEN

In lateral force microscopy (LFM), implemented as frequency-modulation atomic force microscopy, the tip oscillates parallel to the surface. Existing amplitude calibration methods are not applicable for mechanically excited LFM sensors at low temperature. Moreover, a slight angular offset of the oscillation direction (tilt) has a significant influence on the acquired data. To determine the amplitude and tilt we make use of the scanning tunneling microscopy (STM) channel and acquire data without and with oscillation of the tip above a local surface feature. We use a full two-dimensional current map of the STM data without oscillation to simulate data for a given amplitude and tilt. Finally, the amplitude and tilt are determined by fitting the simulation output to the data with oscillation.

10.
Science ; 372(6547): 1196-1200, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34010141

RESUMEN

We explored the bonding properties of the quantum corral (a circle of 48 iron atoms placed on a copper surface) reported by Crommie et al. in 1993, along with variants, as an artificial atom using an atomic force microscope (AFM). The original corral geometry confines 102 electrons to 28 discrete energy states, and we found that these states can form a bond to the front atom of the AFM with an energy of about 5 millielectron volts. The measured forces are about 1/1000 of typical forces in atomically resolved AFM. The confined electrons showed covalent attraction to metal tips and Pauli repulsion to CO-terminated tips. The repulsion at close distance was evident from the response of corral states created by deliberately placing single iron atoms inside the corral. The forces scaled appropriately with a 24-atom corral.

11.
Nat Commun ; 12(1): 2852, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990565

RESUMEN

The quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded the concept of topological order in physics bringing into focus the intimate relation between the "bulk" topology and the edge states. The QH effect in graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials. However, the broken-symmetry edge states have eluded spatial measurements. In this article, we spatially map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of [Formula: see text] across the quantum Hall edge boundary using high-resolution atomic force microscopy (AFM) and show a gapped ground state proceeding from the bulk through to the QH edge boundary. Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moiré superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.

12.
ACS Nano ; 15(2): 3264-3271, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33523628

RESUMEN

Copper phthalocyanine (CuPc) is a small molecule often used in organic light emitting diodes where it is deposited on a conducting electrode. Previous scanning tunneling microscopy (STM) studies of CuPc on Cu(111) have shown that inelastic tunneling events can cause CuPc to switch between a ground state and two symmetrically equivalent metastable states in which the molecule is rotated. We investigated CuPc on Cu(111) and Ag(111) with STM and lateral force microscopy (LFM). Even without inelastic events, the presence of the tip can induce rotations and upon closer approach, causes the rotated states to be favored. Combining STM measurements at various temperatures and LFM measurements, we show that the long-range attraction of the tip changes the potential energy landscape of this molecular switch. We can also determine the geometry of the rotated and ground states. We compare our observations of CuPc on Cu(111) to CuPc on Ag(111). On Ag(111), CuPc appears flat and does not rotate. Stronger bonding typically involves shorter bond lengths, larger shifts of energy levels, and structural stability. Although the binding of CuPc to Cu(111) is stronger than that on Ag(111), the nonplanar geometry of CuPc on Cu(111) is accompanied by two metastable states which are not present on the Ag(111) surface.

13.
Rev Sci Instrum ; 91(8): 083701, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32872933

RESUMEN

Performing atomic force microscopy (AFM) and scanning tunneling microscopy (STM) with atomic resolution under ambient conditions is challenging due to enhanced noise and thermal drift. We show the design of a compact combined atomic force and scanning tunneling microscope that uses qPlus sensors and discuss the stability and thermal drift. By using a material with a low thermal expansion coefficient, we can perform constant height measurements and achieve atomic resolution in both AFM and STM on various samples. Moreover, the design allows a wide angle optical access to the sensor and the sample that is of interest for combining with optical microscopes or focusing optics with a high numerical aperture.

14.
Sci Rep ; 10(1): 14104, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32839507

RESUMEN

Terminating the tip of an atomic force microscope with a CO molecule allows data to be acquired with a well-known and inert apex. Previous studies have shown conflicting results regarding the electrostatic interaction, indicating in some cases that the negative charge at the apex of the CO dominates, whereas in other cases the positive charge at the end of the metal tip dominates. To clarify this, we investigated [Formula: see text](111). [Formula: see text] is an ionic crystal and the (111) surface does not possess charge inversion symmetry. Far from the surface, the interaction is dominated by electrostatics via the negative charge at the apex. Closer to the surface, Pauli repulsion and CO bending dominate, which leads to an unexpected appearance of the complex 3-atom unit cell. We compare simulated data in which the electrostatics are modeled by point particles versus a charge density calculated by DFT. We also compare modeling Pauli repulsion via individual Lennard-Jones potentials versus a total charge density overlap. In doing so, we determine forcefield parameters useful for future investigations of biochemical processes.

15.
Rev Sci Instrum ; 91(7): 071101, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752869

RESUMEN

Research in new quantum materials requires multi-mode measurements spanning length scales, correlations of atomic-scale variables with a macroscopic function, and spectroscopic energy resolution obtainable only at millikelvin temperatures, typically in a dilution refrigerator. In this article, we describe a multi-mode instrument achieving a µeV tunneling resolution with in-operando measurement capabilities of scanning tunneling microscopy, atomic force microscopy, and magnetotransport inside a dilution refrigerator operating at 10 mK. We describe the system in detail including a new scanning probe microscope module design and sample and tip transport systems, along with wiring, radio-frequency filtering, and electronics. Extensive benchmarking measurements were performed using superconductor-insulator-superconductor tunnel junctions, with Josephson tunneling as a noise metering detector. After extensive testing and optimization, we have achieved less than 8 µeV instrument resolving capability for tunneling spectroscopy, which is 5-10 times better than previous instrument reports and comparable to the quantum and thermal limits set by the operating temperature at 10 mK.

16.
Phys Rev Lett ; 124(19): 196101, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32469591

RESUMEN

Atomic force microscopy and scanning tunneling microscopy can image the internal structure of molecules adsorbed on surfaces. One reliable method is to terminate the tip with a nonreactive adsorbate, often a single CO molecule, and to collect data at a close distance where Pauli repulsion plays a strong role. Lateral force microscopy, in which the tip oscillates laterally, probes similar interactions but has the unique ability to pull the CO over a chemical bond, load it as a torsional spring, and release it as it snaps over with each oscillation cycle. This produces measurable energy dissipation. The dissipation has a characteristic decay length in the vertical direction of 4 pm, which is 13 times smaller than the decay length in typical STM or AFM experiments.

17.
Phys Rev Lett ; 124(9): 096001, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202857

RESUMEN

Small metal clusters have been investigated for decades due to their beneficial catalytic activity. It was found that edges are most reactive and the number of catalytic events increases with the cluster's size. However, a direct measurement of chemical reactivity of individual atoms within the clusters has not been reported yet. We combine the high-resolution capability of CO-terminated tips in scanning probe microscopy with their ability to probe chemical binding forces on single Fe atoms to study the chemical reactivity of atom-by-atom assembled Fe clusters from 1 to 15 atoms on the atomic scale. We find that the chemical reactivity of individual atoms within flat Fe clusters does not depend on the cluster size but on the coordination number of the investigated atom. Furthermore, we explain the atomic contrast of the investigated Fe clusters by relating the force spectra of individual atoms with atomic force microscopy images of the clusters.

18.
Beilstein J Nanotechnol ; 10: 2084-2093, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728256

RESUMEN

Surfaces exposed to air can change their structure due to external influences such as chemical reactions or material exchange and movement. The adsorbed water layer that is present under ambient conditions plays an important role especially for highly soluble materials. Surface atoms can easily diffuse into the thin water layer and, when surface conditions are favorable, they can re-attach to the surface. We collected atomic force microscopy images of KBr surfaces in a humidity-controlled glove box at various relative humidities below 40%. By scratching and poking the surface with the AFM tip, we constructed energetically unfavorable holes or scratch sites and material accumulations and recorded the evolution of these defects as a function of the time. We observed an exponential decay of the size of the defects and material accumulations, and from this data we determined energy barriers to dissolution and aggregation of approximately 0.9 eV.

19.
Science ; 366(6462): 235-238, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31515246

RESUMEN

Surface molecules can transition from physisorption through weak van der Waals forces to a strongly bound chemisorption state by overcoming an energy barrier. We show that a carbon monoxide (CO) molecule adsorbed to the tip of an atomic force microscope enables a controlled observation of bond formation, including its potential transition from physisorption to chemisorption. During imaging of copper (Cu) and iron (Fe) adatoms on a Cu(111) surface, the CO was not chemically inert but transited through a physisorbed local energy minimum into a chemisorbed global minimum, and an energy barrier was seen for the Fe adatom. Density functional theory reveals that the transition occurs through a hybridization of the electronic states of the CO molecule mainly with s-, p z -, and d z 2-type states of the Fe and Cu adatoms, leading to chemical bonding.

20.
Rev Sci Instrum ; 90(1): 011101, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709191

RESUMEN

Atomic force microscopy (AFM) was introduced in 1986 and has since made its way into surface science, nanoscience, chemistry, biology, and material science as an imaging and manipulating tool with a rising number of applications. AFM can be employed in ambient and liquid environments as well as in vacuum and at low and ultralow temperatures. The technique is an offspring of scanning tunneling microscopy (STM), where the tunneling tip of the STM is replaced by using a force sensor with an attached tip. Measuring the tiny chemical forces that act between the tip and the sample is more difficult than measuring the tunneling current in STM. Therefore, even 30 years after the introduction of AFM, progress in instrumentation is substantial. Here, we focus on the core of the AFM, the force sensor with its tip and detection mechanism. Initially, force sensors were mainly micro-machined silicon cantilevers, mainly using optical methods to detect their deflection. The qPlus sensor, originally based on a quartz tuning fork and now custom built from quartz, is self-sensing by utilizing the piezoelectricity of quartz. The qPlus sensor allows us to perform STM and AFM in parallel, and the spatial resolution of its AFM channel has reached the subatomic level, exceeding the resolution of STM. Frequency modulation AFM (FM-AFM), where the frequency of an oscillating cantilever is altered by the gradient of the force that acts between the tip and the sample, has emerged over the years as the method that provides atomic and subatomic spatial resolution as well as force spectroscopy with sub-piconewton sensitivity. FM-AFM is precise; because of all physical observables, time and frequency can be measured by far with the greatest accuracy. By design, FM-AFM clearly separates conservative and dissipative interactions where conservative forces induce a frequency shift and dissipative interactions alter the power needed to maintain a constant oscillation amplitude of the cantilever. As it operates in a noncontact mode, it enables simultaneous AFM and STM measurements. The frequency stability of quartz and the small oscillation amplitudes that are possible with stiff quartz sensors optimize the signal to noise ratio. Here, we discuss the operating principles, the assembly of qPlus sensors, amplifiers, limiting factors, and applications. Applications encompass unprecedented subatomic spatial resolution, the measurement of forces that act in atomic manipulation, imaging and spectroscopy of spin-dependent forces, and atomic resolution of organic molecules, graphite, graphene, and oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA