Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(18): e70065, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39305117

RESUMEN

One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.


Asunto(s)
Quemaduras , Microbioma Gastrointestinal , Inflamación , Animales , Quemaduras/microbiología , Ratones , Inflamación/microbiología , Ratones Endogámicos C57BL , Masculino , Envejecimiento , Heces/microbiología , Pulmón/microbiología , Pulmón/metabolismo , Pulmón/patología , Trasplante de Microbiota Fecal , Bacteroidetes , Íleon/microbiología , Íleon/metabolismo
2.
J Burn Care Res ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837704

RESUMEN

Cutaneous burn injury in the elderly is associated with poor clinical outcomes and increased pulmonary-related complications. We and others have shown that burn injury triggers a cascade of inflammatory mediators which increase gut permeability and dysbiosis of the fecal microbiota and this is more dramatic in the aged. Since cross-talk between intestinal microbes and the lung, termed the "gut-lung axis," impacts immunity and homeostasis in the airway, we hypothesized that the increased intestinal dysbiosis in age and burn injury may contribute to excessive pulmonary inflammation and poor prognosis after injury. To explore this hypothesis, we used a clinically relevant murine model of burn injury in which young and aged mice are subjected to a 12% total body surface area dorsal scald burn or sham injury. 24 hours after injury, lung function was assessed and lungs and feces were collected for analysis of inflammatory mediators and fecal microbial species. The results show that, when compared to younger mice, burn injury in aged mice triggers a decline in respiratory function and exacerbates pulmonary inflammation. In addition to heightened levels of the neutrophil recruiting chemokine CXCL1, aged mice displayed a profound increase in the pro-inflammatory protein, calprotectin, in the lung after burn injury. Comparison of the fecal microbiome and inflammatory markers in the lung revealed unique, age-dependent, correlation patterns between individual taxa and pulmonary inflammation. Taken together, these findings suggest that the post-burn dysbiosis of the gut flora in aged mice may contribute to the changes in pulmonary inflammatory profiles.

3.
Shock ; 60(4): 585-593, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37548929

RESUMEN

ABSTRACT: The Earth's population is aging, and by 2050, one of six people will be 65 years or older. Therefore, proper treatment of injuries that disproportionately impact people of advanced age will be more important. Clinical studies reveal people 65 years or older account for 16.5% of all burn injuries and experience higher morbidity, including neurocognitive decline, and mortality that we and others believe are mediated, in part, by heightened intestinal permeability. Herein, we used our clinically relevant model of scald burn injury in young and aged mice to determine whether age and burn injury cooperate to induce heightened colonic damage, alterations to the fecal microbiome, and whether resultant changes in the microbiome correlate with neuroinflammation. We found that aged, burn-injured mice have an increase in colonic lymphoid aggregates, inflammation, and proinflammatory chemokine expression when compared with young groups and sham-injured aged mice. We then performed fecal microbiota sequencing and found a striking reduction in gut protective bacterial taxa, including Akkermansia , in the aged burn group compared with all other groups. This reduction correlated with an increase in serum fluorescein isothiocyanate-Dextran administered by gavage, indicating heightened intestinal permeability. Furthermore, loss of Akkermansia was highly correlated with increased messenger RNA expression of neuroinflammatory markers in the brain, including chemokine ligand 2, TNF-α, CXC motif ligand 1, and S100 calcium-binding protein A8. Finally, we discovered that postburn alterations in the microbiome correlated with measures of strength in all treatment groups, and those that performed better on the rotarod and hanging wire tests had higher abundance of Akkermansia than those that performed worse. Taken together, these findings indicate that loss of protective bacteria after burn injury in aged mice contributes to alterations in the colon, gut leakiness, neuroinflammation, and strength. Therefore, supplementation of protective bacteria, such as Akkermansia , after burn injury in aged patients may have therapeutic benefit.


Asunto(s)
Quemaduras , Microbiota , Humanos , Anciano , Enfermedades Neuroinflamatorias , Disbiosis/microbiología , Ligandos , Quemaduras/microbiología , Bacterias/genética , Quimiocinas , Colon
4.
Alcohol ; 107: 136-143, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36150609

RESUMEN

Alcohol use among older adults is on the rise. This increase is clinically relevant as older adults are at risk for increased morbidity and mortality from many alcohol-related chronic diseases compared to younger patients. However, little is known regarding the synergistic effects of alcohol and age. There are intriguing data suggesting that aging may lead to impaired intestinal barrier integrity and dysbiosis of the intestinal microbiome, which could increase susceptibility to alcohol's negative effects. To study the effects of alcohol in age we exposed aged and young mice to 3 days of moderate ethanol and evaluated changes in gut parameters. We found that these levels of drinking do not have obvious effects in young mice but cause significant alcohol-induced gut barrier dysfunction and expression of the pro-inflammatory cytokine TNFα in aged mice. Ethanol-induced downregulation of expression of the gut-protective antimicrobial peptides Defa-rs1, Reg3b, and Reg3g was observed in aged, but not young mice. Analysis of the fecal microbiome revealed age-associated shifts in microbial taxa, which correlated with intestinal and hepatic inflammatory gene expression. Taken together, these data demonstrate that age drives microbiome dysbiosis, while ethanol exposure in aged mice induces changes in the expression of antimicrobial genes important for separating these potentially damaging microbes from the intestinal lumen. These changes highlight potential mechanistic targets for prevention of the age-related exacerbation of effects of ethanol on the gut.


Asunto(s)
Disbiosis , Etanol , Microbioma Gastrointestinal , Inflamación , Intestinos , Animales , Ratones , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/inmunología , Citocinas/inmunología , Disbiosis/inducido químicamente , Disbiosis/genética , Disbiosis/inmunología , Disbiosis/microbiología , Etanol/farmacología , Etanol/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/microbiología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Ratones Endogámicos C57BL , Permeabilidad/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , alfa-Defensinas/genética , alfa-Defensinas/inmunología
5.
Front Aging ; 32022.
Artículo en Inglés | MEDLINE | ID: mdl-35392033

RESUMEN

The portion of the global population that is over the age of 65 is growing rapidly and this presents a number of clinical complications, as the aged population is at higher risk for various diseases, including infection. For example, advanced age is a risk factor for heightened morbidity and mortality following infection with Streptococcus pneumoniae. This increased vulnerability is due, at least in part, to age-related dysregulation of the immune response, a phenomenon termed immunosenescence. However, our understanding of the mechanisms influencing the immunosenescent state and its effects on the innate immune response to pneumonia remain incomplete. Recently, a role for the gut microbiome in age-specific alterations in immunity has been described. Here, we utilized a murine model of intranasal Streptococcus pneumoniae infection to investigate the effects of age on both the innate immune response and the intestinal microbial populations after infection. In aged mice, compared to their younger counterparts, infection with Streptococcus pneumoniae led to increased mortality, impaired lung function and inadequate bacterial control. This poor response to infection was associated with increased influx of neutrophils into the lungs of aged mice 24 h after infection. The exacerbated pulmonary immune response was not associated with increased pro-inflammatory cytokines in the lung compared to young mice but instead heightened expression of immune cell recruiting chemokines by lung neutrophils. Bacterial 16S-rRNA gene sequencing of the fecal microbiome of aged and young-infected mice revealed expansion of Enterobacteriaceae in the feces of aged, but not young mice, after infection. We also saw elevated levels of gut-derived bacteria in the lung of aged-infected mice, including the potentially pathogenic symbiote Escherichia coli. Taken together, these results reveal that, when compared to young mice, Streptococcus pneumoniae infection in age leads to increased lung neutrophilia along with potentially pathogenic alterations in commensal bacteria and highlight potential mechanistic targets contributing to the increased morbidity and mortality observed in infections in age.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA