Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 126: 127-136, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27353494

RESUMEN

Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions.


Asunto(s)
Gastrópodos/genética , Pichia/metabolismo , Inhibidores de Serina Proteinasa , Animales , Bovinos , Gastrópodos/metabolismo , Humanos , Resonancia Magnética Nuclear Biomolecular , Pichia/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Inhibidores de Serina Proteinasa/biosíntesis , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/aislamiento & purificación
2.
Appl Microbiol Biotechnol ; 99(9): 3875-86, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25403337

RESUMEN

The yeast Pichia pastoris is one of the most robust cell factories in use for the large-scale production of biopharmaceuticals with applications in the fields of human and animal health. Recently, intracellular high-level expression of rabbit hemorrhagic disease virus (RHDV) capsid protein (VP1) as a self-assembled multipurpose antigen/carrier was established as a production process from P. pastoris. Since recovery of VP1 from the culture media implies technological and economic advantages, the secretion of VP1 variants was undertaken in this work. Conversely, extensive degradation of VP1 was detected. Variations to culture parameters and supplementation with different classes of additives were unable to diminish degradation. Strategies were then conducted during fermentations using a recombinant variant of a non-specific BPTI-Kunitz-type protease inhibitor (rShPI-1A) isolated from the sea anemone Stichodactyla helianthus. The presence of the inhibitor in the culture medium at the recombinant protein induction phase, as well as co-culture of the yeast strains expressing VP1 and rShPI-1A, led to VP1 protection from proteolysis and to production of ordered virus-like particles. A yeast strain was also engineered to co-express the rShPI-1A inhibitor and intact VP1. Expression levels up to 116 mg L(-1) of VP1 were reached under these approaches. The antigen was characterized and purified in a single chromatography step, its immunogenic capacity was evaluated, and a detection test for specific antibodies was developed. This work provides feasible strategies for improvements in P. pastoris heterologous protein secretion and is the first report on co-expression of the ShPI-1A with a recombinant product otherwise subjected to proteolytic degradation.


Asunto(s)
Virus de la Enfermedad Hemorrágica del Conejo/genética , Pichia/metabolismo , Inhibidores de Proteasas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Estructurales Virales/metabolismo , Virosomas/metabolismo , Animales , Fermentación , Pichia/genética , Proteínas Recombinantes/genética , Anémonas de Mar/genética , Proteínas Estructurales Virales/genética , Virosomas/genética
3.
FEMS Yeast Res ; 11(7): 575-86, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22093684

RESUMEN

Pichia pastoris is a highly successful system for the large-scale expression of heterologous proteins, with the added capability of performing most eukaryotic post-translational modifications. However, this system has one significant disadvantage - frequent proteolytic degradation by P. pastoris proteases of heterologously expressed proteins. Several methods have been proposed to address this problem, but none has proven fully effective. We tested the effectiveness of a broad specificity protease inhibitor to control proteolysis. A recombinant variant of the BPTI-Kunitz protease inhibitor ShPI-1 isolated from the sea anemone Stichodactyla helianthus, was expressed in P. pastoris. The recombinant inhibitor (rShPI-1A), containing four additional amino acids (EAEA) at the N-terminus, was folded similarly to the natural inhibitor, as assessed by circular dichroism. rShPI-1A had broad protease specificity, inhibiting serine, aspartic, and cysteine proteases similarly to the natural inhibitor. rShPI-1A protected a model protein, recombinant human miniproinsulin (rhMPI), from proteolytic degradation during expression in P. pastoris. The addition of purified rShPI-1A at the beginning of the induction phase significantly protected rhMPI from proteolysis in culture broth. The results suggest that a broad specificity protease inhibitor such as rShPI-1A can be used to improve the yield of recombinant proteins secreted from P. pastoris.


Asunto(s)
Aprotinina/biosíntesis , Expresión Génica , Pichia/metabolismo , Proinsulina/metabolismo , Proteínas Recombinantes/biosíntesis , Animales , Aprotinina/genética , Biotecnología/métodos , Humanos , Ingeniería Metabólica , Pichia/genética , Proinsulina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anémonas de Mar/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...