Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
bioRxiv ; 2024 Jan 19.
Article En | MEDLINE | ID: mdl-38293178

More than half of the ~20,000 protein-encoding human genes have at least one paralog. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to a subset of paralogous proteins. Here, we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs that lack the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we mutated the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling (ABPP) that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-N112C-CCNE1 interaction into a NanoBRET-ABPP assay capable of identifying compounds that reversibly inhibit both N112C- and WT-CCNE1:CDK2 complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings thus provide a roadmap for leveraging electrophile-cysteine interactions to extend the ligandability of the proteome beyond covalent chemistry.

2.
Chem Soc Rev ; 51(9): 3477-3486, 2022 May 10.
Article En | MEDLINE | ID: mdl-35438107

Targeted protein degradation has emerged from the chemical biology toolbox as one of the most exciting areas for novel therapeutic development across the pharmaceutical industry. The ability to induce the degradation, and not just inhibition, of target proteins of interest (POIs) with high potency and selectivity is a particularly attractive property for a protein degrader therapeutic. However, the physicochemical properties and mechanism of action for protein degraders can lead to unique pharmacokinetic (PK) and pharmacodynamic (PD) properties relative to traditional small molecule drugs, requiring a shift in perspective for translational pharmacology. In this review, we provide practical insights for building the PK-PD understanding of protein degraders in the context of translational drug development through the use of quantitative mathematical frameworks and standard experimental assays. Published datasets describing protein degrader pharmacology are used to illustrate the applicability of these insights. The learnings are consolidated into a translational PK-PD roadmap for targeted protein degradation that can enable a systematic, rational design workflow for protein degrader therapeutics.


Models, Biological , Proteolysis
3.
ACS Med Chem Lett ; 12(10): 1585-1588, 2021 Oct 14.
Article En | MEDLINE | ID: mdl-34676040

The ring strain present in azetidines can lead to undesired stability issues. Herein, we described a series of N-substituted azetidines which undergo an acid-mediated intramolecular ring-opening decomposition via nucleophilic attack of a pendant amide group. Studies were conducted to understand the decomposition mechanism enabling the design of stable analogues.

4.
Nat Chem Biol ; 17(2): 152-160, 2021 02.
Article En | MEDLINE | ID: mdl-33199914

Heterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation. However, limited insights into ternary complex structures exist, including a near absence of studies on one of the most widely co-opted E3s, cellular inhibitor of apoptosis 1 (cIAP1). In this work, we use a combination of biochemical, biophysical and structural studies to characterize degrader-mediated ternary complexes of Bruton's tyrosine kinase and cIAP1. Our results reveal new insights from unique ternary complex structures and show that increased ternary complex stability or rigidity need not always correlate with increased degradation efficiency.


Agammaglobulinaemia Tyrosine Kinase/genetics , Inhibitor of Apoptosis Proteins/genetics , Chromatography, Gel , Cross-Linking Reagents , Humans , Kinetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Proteolysis , Spectrometry, Mass, Electrospray Ionization , Ubiquitin-Protein Ligases , Ubiquitination , X-Ray Diffraction
5.
J Pharmacokinet Pharmacodyn ; 48(1): 149-163, 2021 02.
Article En | MEDLINE | ID: mdl-33090299

Bispecific protein degraders (BPDs) engage the ubiquitin-proteasome system (UPS) to catalytically degrade intracellular proteins through the formation of ternary complexes with the target protein and E3 ubiquitin ligases. Here, we describe the development of a mechanistic modeling framework for BPDs that includes the reaction network governing ternary complex formation and degradation via the UPS. A critical element of the model framework is a multi-step process that results in a time delay between ternary complex formation and protein degradation, thereby balancing ternary complex stability against UPS degradation rates akin to the kinetic proofreading concept that has been proposed to explain the accuracy and specificity of biological processes including protein translation and T cell receptor signal transduction. Kinetic proofreading likely plays a central role in the cell's ability to regulate substrate recognition and degradation by the UPS, and the model presented here applies this concept in the context of a quantitative pharmacokinetic (PK)-pharmacodynamic (PD) framework to inform the design of potent and selective BPDs.


Drug Design , Proteasome Endopeptidase Complex/drug effects , Proteolysis/drug effects , Ubiquitin/agonists , Computer Simulation , Humans , Models, Biological , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Signal Transduction/drug effects , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
6.
Proc Natl Acad Sci U S A ; 115(31): E7285-E7292, 2018 07 31.
Article En | MEDLINE | ID: mdl-30012605

Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that simultaneously bind to a target protein and an E3 ligase, thereby leading to ubiquitination and subsequent degradation of the target. They present an exciting opportunity to modulate proteins in a manner independent of enzymatic or signaling activity. As such, they have recently emerged as an attractive mechanism to explore previously "undruggable" targets. Despite this interest, fundamental questions remain regarding the parameters most critical for achieving potency and selectivity. Here we employ a series of biochemical and cellular techniques to investigate requirements for efficient knockdown of Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase essential for B cell maturation. Members of an 11-compound PROTAC library were investigated for their ability to form binary and ternary complexes with BTK and cereblon (CRBN, an E3 ligase component). Results were extended to measure effects on BTK-CRBN cooperative interactions as well as in vitro and in vivo BTK degradation. Our data show that alleviation of steric clashes between BTK and CRBN by modulating PROTAC linker length within this chemical series allows potent BTK degradation in the absence of thermodynamic cooperativity.


Protein-Tyrosine Kinases/metabolism , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Agammaglobulinaemia Tyrosine Kinase , Animals , Cells, Cultured , Ligands , Polyubiquitin/metabolism , Rats , Thermodynamics
7.
Bioorg Med Chem Lett ; 28(15): 2585-2592, 2018 08 15.
Article En | MEDLINE | ID: mdl-29980357

The drugable proteome is limited by the number of functional binding sites that can bind small molecules and respond with a therapeutic effect. Orthosteric and allosteric modulators of enzyme function or receptor signaling are well-established mechanisms of drug action. Drugs that perturb protein-protein interactions have only recently been launched. This approach is more difficult due to the extensive contact surfaces that must be perturbed antagonistically. Compounds that promote novel protein-protein interactions promise to dramatically expand opportunities for therapeutic intervention. This approach is precedented with natural products (rapamycin, FK506, sanglifehrin A), synthetic small molecules (thalidomide and IMiD derivatives) and indisulam analogues.


Adhesives/pharmacology , Biological Products/pharmacology , Allosteric Regulation/drug effects , Drug Discovery , Humans , Ligands , Protein Binding , Proteolysis , Receptors, Cytoplasmic and Nuclear/drug effects , Receptors, Cytoplasmic and Nuclear/metabolism
8.
J Med Chem ; 61(7): 3008-3026, 2018 04 12.
Article En | MEDLINE | ID: mdl-29498843

Monoacylglycerol lipase (MAGL) inhibition provides a potential treatment approach to neuroinflammation through modulation of both the endocannabinoid pathway and arachidonoyl signaling in the central nervous system (CNS). Herein we report the discovery of compound 15 (PF-06795071), a potent and selective covalent MAGL inhibitor, featuring a novel trifluoromethyl glycol leaving group that confers significant physicochemical property improvements as compared with earlier inhibitor series with more lipophilic leaving groups. The design strategy focused on identifying an optimized leaving group that delivers MAGL potency, serine hydrolase selectivity, and CNS exposure while simultaneously reducing log  D, improving solubility, and minimizing chemical lability. Compound 15 achieves excellent CNS exposure, extended 2-AG elevation effect in vivo, and decreased brain inflammatory markers in response to an inflammatory challenge.


Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carbamates/chemical synthesis , Carbamates/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Neuritis/drug therapy , Amidohydrolases/antagonists & inhibitors , Animals , Arachidonic Acids/metabolism , Biomarkers , Brain Chemistry/drug effects , Dogs , Drug Design , Drug Discovery , Endocannabinoids/metabolism , Glycerides/metabolism , Humans , Macaca mulatta , Models, Molecular , Rats , Rats, Wistar , Structure-Activity Relationship
9.
J Med Chem ; 60(14): 6451-6457, 2017 07 27.
Article En | MEDLINE | ID: mdl-28696695

In an effort to find new and safer treatments for osteoporosis and frailty, we describe a novel series of selective androgen receptor modulators (SARMs). Using a structure-based approach, we identified compound 7, a potent AR (ARE EC50 = 0.34 nM) and selective (N/C interaction EC50 = 1206 nM) modulator. In vivo data, an AR LBD X-ray structure of 7, and further insights from modeling studies of ligand receptor interactions are also presented.


Anabolic Agents/chemistry , Androgens/chemistry , Nitriles/chemistry , Pyrroles/chemistry , Receptors, Androgen/metabolism , Anabolic Agents/chemical synthesis , Anabolic Agents/pharmacokinetics , Anabolic Agents/pharmacology , Androgens/chemical synthesis , Androgens/pharmacokinetics , Androgens/pharmacology , Animals , Crystallography, X-Ray , Hypothalamo-Hypophyseal System/drug effects , Male , Molecular Docking Simulation , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Nitriles/chemical synthesis , Nitriles/pharmacology , Organ Size/drug effects , Organ Specificity , Prostate/drug effects , Prostate/physiology , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Seminal Vesicles/drug effects , Seminal Vesicles/physiology , Structure-Activity Relationship
10.
J Med Chem ; 60(5): 1971-1993, 2017 03 09.
Article En | MEDLINE | ID: mdl-28139931

Significant work has been dedicated to the discovery of JAK kinase inhibitors resulting in several compounds entering clinical development and two FDA approved NMEs. However, despite significant effort during the past 2 decades, identification of highly selective JAK3 inhibitors has eluded the scientific community. A significant effort within our research organization has resulted in the identification of the first orally active JAK3 specific inhibitor, which achieves JAK isoform specificity through covalent interaction with a unique JAK3 residue Cys-909. The relatively rapid resynthesis rate of the JAK3 enzyme presented a unique challenge in the design of covalent inhibitors with appropriate pharmacodynamics properties coupled with limited unwanted off-target reactivity. This effort resulted in the identification of 11 (PF-06651600), a potent and low clearance compound with demonstrated in vivo efficacy. The favorable efficacy and safety profile of this JAK3-specific inhibitor 11 led to its evaluation in several human clinical studies.


Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Pyrroles/chemistry , Signal Transduction/drug effects , Administration, Oral , Drug Design , Humans , Janus Kinase 3/metabolism , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrroles/administration & dosage , Pyrroles/pharmacology
11.
Drug Metab Dispos ; 45(1): 1-7, 2017 01.
Article En | MEDLINE | ID: mdl-27784718

The concept of target-specific covalent enzyme inhibitors appears attractive from both an efficacy and a selectivity viewpoint considering the potential for enhanced biochemical efficiency associated with an irreversible mechanism. Aside from potential safety concerns, clearance prediction of covalent inhibitors represents a unique challenge due to the inclusion of nontraditional metabolic pathways of direct conjugation with glutathione (GSH) or via GSH S-transferase-mediated processes. In this article, a novel pharmacokinetic algorithm was developed using a series of Pfizer kinase selective acrylamide covalent inhibitors based on their in vitro-in vivo extrapolation of systemic clearance in rats. The algorithm encompasses the use of hepatocytes as an in vitro model for hepatic clearance due to oxidative metabolism and GSH conjugation, and the use of whole blood as an in vitro surrogate for GSH conjugation in extrahepatic tissues. Initial evaluations with clinical covalent inhibitors suggested that the scaling algorithm developed from rats may also be useful for human clearance prediction when species-specific parameters, such as hepatocyte and blood stability and blood binding, were considered. With careful consideration of clearance mechanisms, the described in vitro-in vivo extrapolation approach may be useful to facilitate candidate optimization, selection, and prediction of human pharmacokinetic clearance during the discovery and development of targeted covalent inhibitors.


Hepatocytes/metabolism , Microsomes, Liver/metabolism , Models, Biological , Pharmaceutical Preparations/metabolism , Plasma/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Algorithms , Animals , Drug Evaluation, Preclinical , Glutathione/metabolism , Humans , In Vitro Techniques , Male , Metabolic Clearance Rate , Mice, Inbred C57BL , Pharmaceutical Preparations/blood , Predictive Value of Tests , Protein Binding , Protein Kinase Inhibitors/blood , Rats , Rats, Sprague-Dawley , Species Specificity
12.
Sci Rep ; 6: 38573, 2016 12 09.
Article En | MEDLINE | ID: mdl-27934919

Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity.


Peptides/chemistry , Protein Conformation, alpha-Helical , Safrole/analogs & derivatives , Circular Dichroism , Models, Molecular , Oxidation-Reduction , Safrole/chemistry
13.
ACS Chem Biol ; 11(12): 3442-3451, 2016 12 16.
Article En | MEDLINE | ID: mdl-27791347

PF-06651600, a newly discovered potent JAK3-selective inhibitor, is highly efficacious at inhibiting γc cytokine signaling, which is dependent on both JAK1 and JAK3. PF-06651600 allowed the comparison of JAK3-selective inhibition to pan-JAK or JAK1-selective inhibition, in relevant immune cells to a level that could not be achieved previously without such potency and selectivity. In vitro, PF-06651600 inhibits Th1 and Th17 cell differentiation and function, and in vivo it reduces disease pathology in rat adjuvant-induced arthritis as well as in mouse experimental autoimmune encephalomyelitis models. Importantly, by sparing JAK1 function, PF-06651600 selectively targets γc cytokine pathways while preserving JAK1-dependent anti-inflammatory signaling such as the IL-10 suppressive functions following LPS treatment in macrophages and the suppression of TNFα and IL-1ß production in IL-27-primed macrophages. Thus, JAK3-selective inhibition differentiates from pan-JAK or JAK1 inhibition in various immune cellular responses, which could potentially translate to advantageous clinical outcomes in inflammatory and autoimmune diseases.


Arthritis, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Animals , Arthritis, Experimental/immunology , Disease Models, Animal , Drug Discovery , Encephalomyelitis, Autoimmune, Experimental/immunology , Humans , Interleukin-10/immunology , Interleukin-1beta/immunology , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 3/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Mice , Models, Molecular , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , Rats , Th1 Cells/cytology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/drug effects , Th17 Cells/immunology , Tumor Necrosis Factor-alpha/immunology
14.
ACS Chem Biol ; 11(9): 2529-40, 2016 09 16.
Article En | MEDLINE | ID: mdl-27391855

Lysophospholipase-like 1 (LYPLAL1) is an uncharacterized metabolic serine hydrolase. Human genome-wide association studies link variants of the gene encoding this enzyme to fat distribution, waist-to-hip ratio, and nonalcoholic fatty liver disease. We describe the discovery of potent and selective covalent small-molecule inhibitors of LYPLAL1 and their use to investigate its role in hepatic metabolism. In hepatocytes, selective inhibition of LYPLAL1 increased glucose production supporting the inference that LYPLAL1 is a significant actor in hepatic metabolism. The results provide an example of how a selective chemical tool can contribute to evaluating a hypothetical target for therapeutic intervention, even in the absence of complete biochemical characterization.


Hydrolases/metabolism , Lysophospholipase/antagonists & inhibitors , Serine/metabolism , Animals , Crystallization , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Humans , Lysophospholipase/chemistry
16.
J Med Chem ; 57(23): 10072-9, 2014 Dec 11.
Article En | MEDLINE | ID: mdl-25375838

Interest in drugs that covalently modify their target is driven by the desire for enhanced efficacy that can result from the silencing of enzymatic activity until protein resynthesis can occur, along with the potential for increased selectivity by targeting uniquely positioned nucleophilic residues in the protein. However, covalent approaches carry additional risk for toxicities or hypersensitivity reactions that can result from covalent modification of unintended targets. Here we describe methods for measuring the reactivity of covalent reactive groups (CRGs) with a biologically relevant nucleophile, glutathione (GSH), along with kinetic data for a broad array of electrophiles. We also describe a computational method for predicting electrophilic reactivity, which taken together can be applied to the prospective design of thiol-reactive covalent inhibitors.


Enzyme Inhibitors/chemistry , Glutathione/chemistry , Drug Design , Glutathione/metabolism , Humans , Kinetics , Mass Spectrometry , Nuclear Magnetic Resonance, Biomolecular , Pharmaceutical Preparations/chemistry
17.
Pharm Pat Anal ; 3(4): 375-86, 2014 Jul.
Article En | MEDLINE | ID: mdl-25291312

Despite concerns of off-target selectivity and cytotoxicity, there has been a resurgence in interest in irreversible kinase inhibitors resulting in more than 60 disclosed patent and patent applications over the past 4 years. Many of these inhibitors possess several key advantages over their reversible counterparts. The patent literature from 2010 to 2013 has been reviewed and novel irreversible kinase inhibitors for Bruton's tyrosine kinase, epidermal growth factor receptor, Janus kinase 3, phosphoinsitide 3 and other kinases are disclosed and discussed. These inhibitors offer novel treatments for mantle cell lymphoma, non-small-cell lung cancer, autoimmune disorders and severe metastatic cancers. A future perspective is presented on the likelihood of clinical success of these agents as well as the potential for new uses of irreversible kinase inhibitors in the future.


Autoimmune Diseases/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/antagonists & inhibitors , Janus Kinase 3/antagonists & inhibitors , Lymphoma, Mantle-Cell/drug therapy , Neoplasm Metastasis/drug therapy , Patents as Topic , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Arthritis, Rheumatoid/drug therapy , Graft Rejection/drug therapy , Humans , Inflammatory Bowel Diseases/drug therapy , Lymphoma, B-Cell/drug therapy
18.
Nat Chem Biol ; 10(9): 760-767, 2014 Sep.
Article En | MEDLINE | ID: mdl-25038787

Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.


Protein Kinase Inhibitors/pharmacology , Proteome/genetics , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Cell Line, Tumor , Cell Survival/drug effects , Cysteine/chemistry , Genes, erbB-1/genetics , Humans , Kinetics , Piperidines , Protein Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
19.
J Med Chem ; 57(6): 2462-71, 2014 Mar 27.
Article En | MEDLINE | ID: mdl-24527807

We present a novel series of selective androgen receptor modulators (SARMs) which shows excellent biological activity and physical properties. 1-(2-Hydroxy-2-methyl-3-phenoxypropanoyl)-indoline-4-carbonitriles showed potent binding to the androgen receptor (AR) and activated AR-mediated transcription in vitro. Representative compounds demonstrated diminished activity in promoting the intramolecular interaction between the AR carboxyl (C) and amino (N) termini. This N/C-termini interaction is a biomarker assay for the undesired androgenic responses in vivo. In orchidectomized rats, daily administration of a lead compound from this series showed anabolic activity by increasing levator ani muscle weight. Importantly, minimal androgenic effects (increased tissue weights) were observed in the prostate and seminal vesicles, along with minimal repression of circulating luteinizing hormone (LH) levels and no change in the lipid and triglyceride levels. This lead compound completed a two week rat toxicology study, and was well tolerated at doses up to 100 mg/kg/day, the highest dose tested, for 14 consecutive days.


Indoles/chemical synthesis , Indoles/pharmacology , Receptors, Androgen/drug effects , Anabolic Agents/chemical synthesis , Anabolic Agents/pharmacology , Animals , Area Under Curve , Biological Availability , Biomarkers , Cell Line , Lipid Metabolism/drug effects , Luteinizing Hormone/antagonists & inhibitors , Luteinizing Hormone/metabolism , Male , Models, Molecular , Muscle, Skeletal/drug effects , Muscle, Skeletal/growth & development , Orchiectomy , Organ Size/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Androgen/metabolism , Structure-Activity Relationship , Testis/drug effects , Testis/metabolism , Testosterone/biosynthesis , Triglycerides/metabolism , X-Ray Diffraction
20.
Chem Res Toxicol ; 26(11): 1739-45, 2013 Nov 18.
Article En | MEDLINE | ID: mdl-24164572

Despite several advantages of covalent inhibitors (such as increased biochemical efficiency, longer duration of action on the target, and lower efficacious doses) over their reversible binding counterparts, there is a reluctance to use covalent inhibitors as a drug design strategy in pharmaceutical research. This reluctance is due to their anticipated reactions with nontargeted macromolecules. We hypothesized that there may be a threshold limit for nonspecific covalent binding, below which a covalent binding drug may be less likely to cause toxicity due to irreversible binding to off-target macromolecules. Estimation of in vivo covalent binding burden from in vitro data has previously been used as an approach to distinguish those agents more likely to cause toxicity (e.g., hepatotoxicity) via metabolic activation to reactive metabolites. We have extended this approach to nine covalent binding drugs to determine in vitro covalent binding burden. In vitro covalent binding burden was determined by incubating radiolabeled drugs with pooled human hepatocytes. These data were scaled to an estimate of in vivo covalent binding burden by combining the in vitro data with daily dose. Scaled in vivo daily covalent binding burden of marketed covalent drugs was found to be under 10 mg/day, which is in agreement with previously reported threshold value for metabolically activated reversible drugs. Covalent binding was also compared to the intrinsic reactivities of the covalent inhibitors assessed using nucleophiles glutathione and N-α-acetyl lysine. The intrinsic reactivity did not correlate with observed in vitro covalent binding, which demonstrated that the intrinsic reactivity of the electrophilic groups of covalent drugs does not exclusively account for the extent of covalent binding. The ramifications of these findings for consideration of using a covalent strategy in drug design are discussed.


Drug-Related Side Effects and Adverse Reactions , Hepatocytes/drug effects , Pharmaceutical Preparations/chemistry , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/metabolism , Adamantane/toxicity , Aspirin/chemistry , Aspirin/metabolism , Aspirin/toxicity , Carbon Radioisotopes/chemistry , Cells, Cultured , Glutathione/chemistry , Glutathione/metabolism , Half-Life , Hepatocytes/metabolism , Humans , Lactones/chemistry , Lactones/metabolism , Lactones/toxicity , Lysine/chemistry , Lysine/metabolism , Nitriles/chemistry , Nitriles/metabolism , Nitriles/toxicity , Orlistat , Pharmaceutical Preparations/metabolism , Pyrrolidines/chemistry , Pyrrolidines/metabolism , Pyrrolidines/toxicity , Tritium/chemistry , Vildagliptin
...