Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 10(17): 4851-4856, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31397161

RESUMEN

Phonon polaritons (PhPs) are quasiparticles created by coupling of photons to polar lattice vibrations. Previously, PhPs have been observed as both surface and volume confined waves. The dispersion of the polariton depends strongly on the nature of the material. Volume polaritons show asymptotic behavior near the longitudinal optical phonon frequency of the material, whereas surface polaritons instead approach the surface phonon frequency. Boron nitride nanotubes (BNNTs) were found to exhibit the dispersion of volume modes below the surface phonon frequency. However, around and above the surface phonon frequency, the behavior becomes that of a surface wave with an amplified near-field response. These findings improve our understanding of photonics within BNNTs and suggest potential applications that take advantage of the high fields and density of states in that spectral region.

2.
Opt Express ; 25(21): 25059-25070, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29041177

RESUMEN

We report experimental observations of optical hot-spots associated with surface phonon polaritons in boron nitride nanotubes. As revealed by near-field optical microscopy, the hot-spots have mode volumes as small as ≃2.7×10-6λ03 (λ0 is the wavelength of the exciting light in vacuum), which are in the deep subwavelength regime. Such strong light-trapping leads to ultrahigh field enhancement with a Purcell factor of ≃1.8 × 106. Remarkably, the hot-spots are not induced by designed structures, but by random scatterings with the rough gold substrate. The ultrahigh field enhancement can be used to improve nonlinear infrared spectroscopy, thermal emitters and detectors, and label-free molecule sensing at nanoscales.

3.
J Phys Chem Lett ; 8(13): 2902-2908, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28604008

RESUMEN

In order to apply the ability of hexagonal boron nitride (hBN) to confine energy in the form of hyperbolic phonon polariton (HPhP) modes in photonic-electronic devices, approaches to finely control and leverage the sensitivity of these propagating waves must be investigated. Here, we show that by surrounding hBN with materials of lower/higher dielectric responses, such as air and silicon, lower/higher surface momenta of HPhPs can be achieved. Furthermore, an alternative method for preparing thin hBN crystals with minimum contamination is presented, which provides opportunities to study the sensitivity of the damping mechanism of HPhPs on adsorbed materials. Infrared scanning near-field optical microscopy (IR-SNOM) results suggest that the reflections at the upper and lower hBN interfaces are primary causes of the damping of HPhPs, and that the damping coefficients of propagating waves are highly sensitive to adjacent layers, suggesting opportunities for sensor applications.

4.
J Phys Chem Lett ; 8(10): 2158-2162, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28452482

RESUMEN

Hexagonal boron nitride (hBN) is a 2D material that supports traveling waves composed of material vibrations and light, and is attractive for nanoscale optical devices that function in the infrared. However, the only current method of launching these traveling waves requires the use of a metal nanostructure. Here, we show that the polaritonic waves can be launched into the 2D structure by folds within hBN, alone, taking advantage of the intrinsic material properties. Our findings suggest that structural continuity between the fold and hBN crystal is crucial for creating self-launched waves with a constant phase front. This approach offers a single material system to excite the polaritonic modes, and the approach is applicable to a broad range of 2D crystals and thus could be useful in future characterization.

5.
J Phys Chem Lett ; 7(2): 289-94, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26727539

RESUMEN

Surface phonon modes are lattice vibrational modes of a solid surface. Two common surface modes, called longitudinal and transverse optical modes, exhibit lattice vibration along or perpendicular to the direction of the wave. We report a two-color, infrared pump-infrared probe technique based on scattering type near-field optical microscopy (s-SNOM) to spatially resolve coupling between surface phonon modes. Spatially varying couplings between the longitudinal optical and surface phonon polariton modes of boron nitride nanotubes are observed, and a simple model is proposed.

6.
ACS Nano ; 8(11): 11305-12, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25365544

RESUMEN

Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polaritonic coupling between graphene SPPs and boron nitride nanotube (BNNT) SPhPs. Infrared scattering type scanning near-field optical microscopy is used to obtain spatial distribution of the two types of polaritons at the nanoscale. The observation suggests that those polaritons interact at the nanoscale in a one-dimensional/two-dimensional (1D/2D) geometry, exchanging energy in a nonplanar configuration at the nanoscale. Control of the polaritonic interaction is achieved by adjustment of the graphene Fermi level through voltage gating. Our observation suggests that boron nitride nanotubes and graphene can interact at mid-infrared frequencies and coherently exchange their energies at the nanoscale through the overlap of mutual electric near field of surface phonon polaritons and surface plasmon polaritons. Such interaction enables the design of nano-optical devices based on BNNT-graphene polaritonics in the mid-infrared range.

7.
Nat Commun ; 5: 4782, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25154586

RESUMEN

Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA