Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Emerg Med J ; 41(5): 337-339, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38360063

RESUMEN

A short cut review of the literature was carried out to examine the evidence supporting antithrombotic treatment and/or endovascular therapy to reduce mortality and/or prevent future stroke following blunt cerebrovascular injury (BCVI). Five papers were identified as suitable for inclusion using the reported search strategy. The author, date and country of publication, patient group studied, study type, relevant outcomes, results and study weaknesses of the best papers are tabulated. It is concluded that in patients with BCVI confirmed by CT angiography, there is limited evidence to support screening for, or treating BCVI. In confirmed BCVI where the risk of stroke is felt to outweigh the risk of bleeding, antiplatelet therapy appears to be as effective as therapeutic anticoagulation.

2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894848

RESUMEN

Rice is the most important staple crop for the sustenance of the world's population, and drought is a major factor limiting rice production. Quantitative trait locus (QTL) analysis of drought-resistance-related traits was conducted on a recombinant inbred line (RIL) population derived from the self-fed progeny of a cross between the drought-resistant tropical japonica U.S. adapted cultivar Kaybonnet and the drought-sensitive indica cultivar ZHE733. K/Z RIL population of 198 lines was screened in the field at Fayetteville (AR) for three consecutive years under controlled drought stress (DS) and well-watered (WW) treatment during the reproductive stage. The effects of DS were quantified by measuring morphological traits, grain yield components, and root architectural traits. A QTL analysis using a set of 4133 single nucleotide polymorphism (SNP) markers and the QTL IciMapping identified 41 QTLs and 184 candidate genes for drought-related traits within the DR-QTL regions. RT-qPCR in parental lines was used to confirm the putative candidate genes. The comparison between the drought-resistant parent (Kaybonnet) and the drought-sensitive parent (ZHE733) under DS conditions revealed that the gene expression of 15 candidate DR genes with known annotations and two candidate DR genes with unknown annotations within the DR-QTL regions was up-regulated in the drought-resistant parent (Kaybonnet). The outcomes of this research provide essential information that can be utilized in developing drought-resistant rice cultivars that have higher productivity when DS conditions are prevalent.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Oryza/genética , Resistencia a la Sequía , Fenotipo
3.
Sci Rep ; 13(1): 4880, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966148

RESUMEN

Elevated nighttime temperatures resulting from climate change significantly impact the rice crop worldwide. The rice (Oryza sativa L.) plant is highly sensitive to high nighttime temperature (HNT) during grain-filling (reproductive stage). HNT stress negatively affects grain quality traits and has a major impact on the value of the harvested rice crop. In addition, along with grain dimensions determining rice grain market classes, the grain appearance and quality traits determine the rice grain market value. During the last few years, there has been a major concern for rice growers and the rice industry over the prevalence of rice grains opacity and the reduction of grain dimensions affected by HNT stress. Hence, the improvement of heat-stress tolerance to maintain grain quality of the rice crop under HNT stress will bolster future rice value in the market. In this study, 185 F12-recombinant inbred lines (RILs) derived from two US rice cultivars, Cypress (HNT-tolerant) and LaGrue (HNT-sensitive) were screened for the grain quality traits grain length (GL), grain width (GW), and percent chalkiness (%chalk) under control and HNT stress conditions and evaluated to identify the genomic regions associated with the grain quality traits. In total, there were 15 QTLs identified; 6 QTLs represented under control condition explaining 3.33% to 8.27% of the phenotypic variation, with additive effects ranging from - 0.99 to 0.0267 on six chromosomes and 9 QTLs represented under HNT stress elucidating 6.39 to 51.53% of the phenotypic variation, with additive effects ranging from - 8.8 to 0.028 on nine chromosomes for GL, GW, and % chalk. These 15 QTLs were further characterized and scanned for natural genetic variation in a japonica diversity panel (JDP) to identify candidate genes for GL, GW, and %chalk. We found 6160 high impact single nucleotide polymorphisms (SNPs) characterized as such depending on their type, region, functional class, position, and proximity to the gene and/or gene features, and 149 differentially expressed genes (DEGs) in the 51 Mbp genomic region comprising of the 15 QTLs. Out of which, 11 potential candidate genes showed high impact SNP associations. Therefore, the analysis of the mapped QTLs and their genetic dissection in the US grown Japonica rice genotypes at genomic and transcriptomic levels provide deep insights into genetic variation beneficial to rice breeders and geneticists for understanding the mechanisms related to grain quality under heat stress in rice.


Asunto(s)
Oryza , Oryza/genética , Temperatura , Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo/genética , Fenotipo , Grano Comestible/genética
4.
Methods Mol Biol ; 2391: 45-54, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34686975

RESUMEN

Changes in the surrounding environment are mirrored by changes in the transcript profile of an organism. In the case of a plant pathogen, host colonization would be a challenge that triggers changes in transcript expression patterns. Determining the transcriptional profile could provide valuable clues on how an organism responds to defined stimuli, in this case, how a pathogen colonizes its host. Several robust data analysis methods and pipelines are available that can identify these differentially expressed transcripts. In this chapter we outline the steps and other caveats that are needed to run one such pipeline.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Análisis de Datos , RNA-Seq , Transcriptoma , Secuenciación del Exoma
5.
Genome Res ; 29(1): 146-156, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30409771

RESUMEN

Cannabis sativa is widely cultivated for medicinal, food, industrial, and recreational use, but much remains unknown regarding its genetics, including the molecular determinants of cannabinoid content. Here, we describe a combined physical and genetic map derived from a cross between the drug-type strain Purple Kush and the hemp variety "Finola." The map reveals that cannabinoid biosynthesis genes are generally unlinked but that aromatic prenyltransferase (AP), which produces the substrate for THCA and CBDA synthases (THCAS and CBDAS), is tightly linked to a known marker for total cannabinoid content. We further identify the gene encoding CBCA synthase (CBCAS) and characterize its catalytic activity, providing insight into how cannabinoid diversity arises in cannabis. THCAS and CBDAS (which determine the drug vs. hemp chemotype) are contained within large (>250 kb) retrotransposon-rich regions that are highly nonhomologous between drug- and hemp-type alleles and are furthermore embedded within ∼40 Mb of minimally recombining repetitive DNA. The chromosome structures are similar to those in grains such as wheat, with recombination focused in gene-rich, repeat-depleted regions near chromosome ends. The physical and genetic map should facilitate further dissection of genetic and molecular mechanisms in this commercially and medically important plant.


Asunto(s)
Cannabinoides , Cannabis , Mapeo Cromosómico , Cromosomas de las Plantas , Ligasas , Proteínas de Plantas , Cannabinoides/biosíntesis , Cannabinoides/genética , Cannabis/genética , Cannabis/metabolismo , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Reordenamiento Génico , Ligasas/genética , Ligasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Nature ; 546(7656): 148-152, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28538728

RESUMEN

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Asunto(s)
Evolución Molecular , Flores/genética , Flores/fisiología , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Aceites de Plantas/metabolismo , Aclimatación/genética , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genómica , Helianthus/clasificación , Análisis de Secuencia de ADN , Estrés Fisiológico/genética , Aceite de Girasol , Transcriptoma/genética
7.
J Cogn Neurosci ; 29(7): 1302-1310, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28294717

RESUMEN

Our attentional focus is constantly shifting: In one moment, our attention may be intently concentrated on a specific spot, whereas in another moment we might spread our attention more broadly. Although much is known about the mechanisms by which we shift our visual attention from place to place, relatively little is known about how we shift the aperture of attention from more narrowly to more broadly focused. Here we introduce a novel attentional distribution task to examine the neural mechanisms underlying this process. In this task, participants are presented with an informative cue that indicates the location of an upcoming target. This cue can be perfectly predictive of the exact target location, or it can indicate-with varying degrees of certainty-approximately where the target might appear. This cue is followed by a preparatory period in which there is nothing on the screen except a central fixation cross. Using scalp EEG, we examined neural activity during this preparatory period. We find that, with decreasing certainty regarding the precise location of the impending target, participant RTs increased whereas target identification accuracy decreased. Additionally, the multivariate pattern of preparatory period visual cortical alpha (8-12 Hz) activity encoded attentional distribution. This alpha encoding was predictive of behavioral accuracy and RT nearly 1 sec later. These results offer insight into the neural mechanisms underlying how we use information to guide our attentional distribution and how that influences behavior.


Asunto(s)
Anticipación Psicológica/fisiología , Atención/fisiología , Encéfalo/fisiología , Percepción Espacial/fisiología , Adulto , Electroencefalografía , Humanos , Pruebas Neuropsicológicas , Tiempo de Reacción , Adulto Joven
8.
Chromosome Res ; 24(2): 197-216, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26758200

RESUMEN

Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Análisis Citogenético/métodos , Fase Paquiteno/genética , Mapeo Físico de Cromosoma , Vigna/genética , 5-Metilcitosina/análisis , Centrómero/genética , Genoma de Planta , Hibridación Fluorescente in Situ , Meiosis/genética , Mitosis/genética , Retroelementos/genética , Secuencias Repetidas en Tándem/genética
9.
Proc Natl Acad Sci U S A ; 112(11): 3451-6, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733908

RESUMEN

Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems.


Asunto(s)
Adaptación Fisiológica/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/genética , Dosificación de Gen , Transferencia de Gen Horizontal , Árboles/microbiología , Madera/microbiología , Ascomicetos/patogenicidad , Secuencia de Bases , Recuento de Colonia Microbiana , Regulación Fúngica de la Expresión Génica , Especiación Genética , Genoma Fúngico/genética , Interacciones Huésped-Patógeno/genética , Alcaloides Indólicos/metabolismo , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Filogenia , Populus/microbiología , Proteolisis , Sintenía/genética , Factores de Tiempo
10.
Ophthalmol Ther ; 4(1): 43-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25769782

RESUMEN

INTRODUCTION: The aim of this study was to investigate the frequency and duration of missed hospital appointments (MHAs) in a consecutive cohort of patients treated with ranibizumab for neovascular age-related macular degeneration (nAMD) and to assess their impact on outcomes of therapy in a real-world clinical setting. METHODS: Retrospective, cross-sectional study of consecutive patients attending medical retina clinics for nAMD treatment with ranibizumab. RESULTS: Seventy-eight eyes of 78 patients met the inclusion criteria for data analysis. Mean age was 78 years with mean follow-up of 27 months. Mean visual acuity (VA) was 52 ± 16 letters at baseline, 56 ± 17 letters at year 1 and 58 ± 16 letters at year 2. At the end of the second year, 90% of the patients had lost <15 letters, 26% had gained ≥15 letters and 10% had lost ≥15 letters. Nineteen patients had at least one MHA (24%) over 2 years. There were 26 MHA episodes in total leading to a median duration of 79 days (range 35-159) between attended hospital visits. None of these MHAs occurred during the first 3 months after treatment initiation. Mean VA and central retinal thickness difference between 2 years and baseline for the MHA group was not statistically different compared with the non-MHA group. CONCLUSIONS: Our data suggest that MHA may be a relatively common occurrence in AMD treatment clinics, but good outcomes of treatment can be achieved over 2 years despite missed hospital visits if patients are reviewed on average six times in the first year after an initial loading phase of three injections and nine times in the second year of treatment.

11.
Curr Biol ; 25(5): 613-20, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25660540

RESUMEN

Gall-forming arthropods are highly specialized herbivores that, in combination with their hosts, produce extended phenotypes with unique morphologies [1]. Many are economically important, and others have improved our understanding of ecology and adaptive radiation [2]. However, the mechanisms that these arthropods use to induce plant galls are poorly understood. We sequenced the genome of the Hessian fly (Mayetiola destructor; Diptera: Cecidomyiidae), a plant parasitic gall midge and a pest of wheat (Triticum spp.), with the aim of identifying genic modifications that contribute to its plant-parasitic lifestyle. Among several adaptive modifications, we discovered an expansive reservoir of potential effector proteins. Nearly 5% of the 20,163 predicted gene models matched putative effector gene transcripts present in the M. destructor larval salivary gland. Another 466 putative effectors were discovered among the genes that have no sequence similarities in other organisms. The largest known arthropod gene family (family SSGP-71) was also discovered within the effector reservoir. SSGP-71 proteins lack sequence homologies to other proteins, but their structures resemble both ubiquitin E3 ligases in plants and E3-ligase-mimicking effectors in plant pathogenic bacteria. SSGP-71 proteins and wheat Skp proteins interact in vivo. Mutations in different SSGP-71 genes avoid the effector-triggered immunity that is directed by the wheat resistance genes H6 and H9. Results point to effectors as the agents responsible for arthropod-induced plant gall formation.


Asunto(s)
Cromosomas/genética , Dípteros/genética , Familia de Multigenes/genética , Filogenia , Tumores de Planta/genética , Triticum/parasitología , Adaptación Biológica/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dípteros/metabolismo , Larva/metabolismo , Modelos Genéticos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Homología de Secuencia , Conducta Sexual Animal/fisiología , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
12.
J Control Release ; 199: 72-83, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25497312

RESUMEN

PURPOSE: A liposomal formulation of irinotecan, Irinophore C™ (IrC™) is efficacious in a panel of tumor models, normalizes tumor vasculature, and increases the accumulation of a second drug in the same tumor. We now show that Irinophore C™ is also effective against patient derived xenografts (PDX) of colon cancer, and examine the kinetics of vascular normalization in the HT-29 tumor model and assess how these changes might be used with 5-FU sequentially. MATERIALS AND METHODS: Rag2M mice bearing HT-29 tumors were treated with IrC™ (25mg/kg; Q7D×3) for up to three weeks. Groups of tumors were harvested for analysis at 7, 14 and 21days after the start of treatment. Drug and lipid levels in the tumor were evaluated using HPLC and scintillation counts, respectively. Changes in tumor morphology (H&E), vasculature (CD31), perfusion (Hoechst 33342) and apoptosis (TUNEL) were quantified using microscopy. The accumulation of a second drug ([(14)C]-5-FU, 40mg/kg) given 3h before sacrifice was determined using liquid scintillation. The efficacy of IrC™ (Q7D×3) followed by 5-FU treatment (Q7D×3) was assessed in mice bearing established HT-29 tumors. The efficacy of IrC™ was also evaluated in primary human colorectal tumors grown orthotopically in NOD-SCID mice. RESULTS: Following a single dose of IrC™ the active lactone forms of irinotecan and its metabolite SN-38 were measurable in HT-29 tumors after 7days. The treatment reduced tumor cell density and increased apoptosis. Hoechst 33342 perfusion and accumulation of [(14)C]-5-FU in the treated tumors increased significantly on days 7 and 14. This was accompanied by an increase in the number of endothelial cells relative to total nuclei in the tumor sections. Pre-treatment with IrC™ (Q7D×3) followed by 5-FU (Q7D×3) delayed the time taken for tumors to reach 1cm(3) by 9days (p<0.05). IrC™ was just as effective as free irinotecan when used on patient derived xenografts of colorectal cancer. CONCLUSIONS: Treatment with IrC™ reduces tumor cell viability and appears to normalize the vascular function of the tumor after a single treatment cycle. A concomitant increase in the accumulation of a second drug (5-FU) in the tumor was observed in tumors from IrC™ treated animals and this was correlated with changes in vascular structure consistent with normalization. The treatment effects of sequential 5-FU dosing following IrC™ are additive with no additional toxicity in contrast to previous studies where concurrent 5-FU and IrC™ treatment exacerbated 5-FU toxicity. The studies with PDX tumors also indicate that IrC™ is just as effective as free irinotecan on PDX tumors even though the delivered dose is halved.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Camptotecina/análogos & derivados , Neoplasias del Colon/tratamiento farmacológico , Fluorouracilo/farmacología , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Vasos Sanguíneos/efectos de los fármacos , Camptotecina/administración & dosificación , Camptotecina/farmacología , Línea Celular Tumoral , Química Farmacéutica , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/patología , Sistemas de Liberación de Medicamentos , Células HT29 , Humanos , Irinotecán , Ratones , Ratones Endogámicos NOD , Ratones SCID , Nanoestructuras , Flujo Sanguíneo Regional/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
BMC Genomics ; 15: 1132, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25519841

RESUMEN

BACKGROUND: In addition to gene identification and annotation, repetitive sequence analysis has become an integral part of genome sequencing projects. Identification of repeats is important not only because it improves gene prediction, but also because of the role that repetitive sequences play in determining the structure and evolution of genes and genomes. Several methods using different repeat-finding strategies are available for whole-genome repeat sequence analysis. Four independent approaches were used to identify and characterize the repetitive fraction of the Mycosphaerella graminicola (synonym Zymoseptoria tritici) genome. This ascomycete fungus is a wheat pathogen and its finished genome comprises 21 chromosomes, eight of which can be lost with no obvious effects on fitness so are dispensable. RESULTS: Using a combination of four repeat-finding methods, at least 17% of the M. graminicola genome was estimated to be repetitive. Class I transposable elements, that amplify via an RNA intermediate, account for about 70% of the total repetitive content in the M. graminicola genome. The dispensable chromosomes had a higher percentage of repetitive elements as compared to the core chromosomes. Distribution of repeats across the chromosomes also varied, with at least six chromosomes showing a non-random distribution of repetitive elements. Repeat families showed transition mutations and a CpA → TpA dinucleotide bias, indicating the presence of a repeat-induced point mutation (RIP)-like mechanism in M. graminicola. One gene family and two repeat families specific to subtelomeres also were identified in the M. graminicola genome. A total of 78 putative clusters of nested elements was found in the M. graminicola genome. Several genes with putative roles in pathogenicity were found associated with these nested repeat clusters. This analysis of the transposable element content in the finished M. graminicola genome resulted in a thorough and highly curated database of repetitive sequences. CONCLUSIONS: This comprehensive analysis will serve as a scaffold to address additional biological questions regarding the origin and fate of transposable elements in fungi. Future analyses of the distribution of repetitive sequences in M. graminicola also will be able to provide insights into the association of repeats with genes and their potential role in gene and genome evolution.


Asunto(s)
Ascomicetos/genética , Ascomicetos/fisiología , Elementos Transponibles de ADN/genética , Genoma Fúngico/genética , Triticum/microbiología , Cromosomas Fúngicos/genética , Anotación de Secuencia Molecular , Mutación Puntual , Secuencias Repetidas en Tándem/genética , Telómero/genética
14.
Biology (Basel) ; 3(2): 295-319, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24833511

RESUMEN

Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the genomic distribution of these repeats to that found in other food crops and model species. We also examine the expression of transposable element-related transcripts in EST databases for sunflower to determine the representation of repeats in the transcriptome and to measure their transcriptional activity. Our data confirm previous reports in suggesting that the sunflower genome is >78% repetitive. Sunflower repeats share very little similarity to other plant repeats such as those of Arabidopsis, rice, maize and wheat; overall 28% of repeats are "novel" to sunflower. The repetitive sequences appear to be randomly distributed within the sequenced BACs. Assuming the 96 BACs are representative of the genome as a whole, then approximately 5.2% of the sunflower genome comprises non TE-related genic sequence, with an average gene density of 18kbp/gene. Expression levels of these transposable elements indicate tissue specificity and differential expression in vegetative and reproductive tissues, suggesting that expressed TEs might contribute to sunflower development. The assembled BACs will also be useful for assessing the quality of several different draft assemblies of the sunflower genome and for annotating the reference sequence.

15.
BMC Genomics ; 14: 686, 2013 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-24093210

RESUMEN

BACKGROUND: Next generation sequencing provides a powerful tool to study genome structure in species whose genomes are far from being completely sequenced. In this work we describe and compare different computational approaches to evaluate the repetitive component of the genome of sunflower, by using medium/low coverage Illumina or 454 libraries. RESULTS: By varying sequencing technology (Illumina or 454), coverage (0.55 x-1.25 x), assemblers and assembly procedures, six different genomic databases were produced. The annotation of these databases showed that they were composed of different proportions of repetitive DNA families. The final assembly of the sequences belonging to the six databases produced a whole genome set of 283,800 contigs. The redundancy of each contig was estimated by mapping the whole genome set with a large Illumina read set and measuring the number of matched Illumina reads. The repetitive component amounted to 81% of the sunflower genome, that is composed mainly of numerous families of Gypsy and Copia retrotransposons. Also many families of non autonomous retrotransposons and DNA transposons (especially of the Helitron superfamily) were identified. CONCLUSIONS: The results substantially matched those previously obtained by using a Sanger-sequenced shotgun library and a standard 454 whole-genome-shotgun approach, indicating the reliability of the proposed procedures also for other species. The repetitive sequences were collected to produce a database, SUNREP, that will be useful for the annotation of the sunflower genome sequence and for studying the genome evolution in dicotyledons.


Asunto(s)
Genoma de Planta/genética , Helianthus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuencia de Bases , ADN Intergénico/genética , Bases de Datos de Ácidos Nucleicos , Genes de Plantas , Retroelementos/genética , Secuencias Repetidas Terminales/genética
16.
BMC Genomics ; 14: 502, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23883295

RESUMEN

BACKGROUND: Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. RESULTS: (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. CONCLUSIONS: (i) Short read alignment/mapping to reference TE contigs provides a simple and effective method of investigating intraspecific differences in TE composition. It is not appropriate for comparing repetitive elements across the species boundaries, for which de novo methods are more appropriate. (ii) Individual T. cacao accessions have unique spectra of TE composition indicating active evolution of TE abundance within this species. TE patterns could potentially be used as a "fingerprint" to identify and characterize cacao accessions.


Asunto(s)
Cacao/genética , Elementos Transponibles de ADN/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Secuencia Conservada , Evolución Molecular , Análisis de Componente Principal , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
17.
Int J Syst Evol Microbiol ; 63(Pt 6): 2146-2154, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23104363

RESUMEN

Corynebacterium propinquum is a Gram-positive rod occasionally recovered from clinical infections which, according to 16S rRNA gene sequencing, is most closely related (>99% sequence similarity) to Corynebacterium pseudodiphtheriticum. The two species are very similar biochemically, commonly differentiated by a single test, the detection of urease, where strains of C. propinquum are described as being urease-non-producing and strains of C. pseudodiphtheriticum are described as urease-producing. In this study, historical and contemporary strains of C. propinquum and C. pseudodiphtheriticum from this laboratory were definitively characterized, which included use of rpoB sequencing. Urease-producing strains of C. propinquum as well as typical urease-non-producing isolates were identified after rpoB sequencing, with six of these being originally identified as C. pseudodiphtheriticum. Based on these observations, we propose emendation of the description of C. propinquum to include strains which produce urease. MALDI-TOF analysis may be a useful tool to differentiate these taxa. Existing commercial databases should be updated to include urease-positive strains of C. propinquum.


Asunto(s)
Corynebacterium/clasificación , Ureasa/biosíntesis , Corynebacterium/enzimología , ADN Bacteriano/genética , Genes Bacterianos , Datos de Secuencia Molecular , Fenotipo , ARN Ribosómico 16S/genética , Especificidad de la Especie , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
PLoS One ; 7(10): e48595, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23119066

RESUMEN

Retrotransposons with long terminal repeats (LTRs) more than 3 kb are not frequent in most eukaryotic genomes. Rice LTR retrotransposon, Retrosat2, has LTRs greater than 3.2 kb and two open reading frames (ORF): ORF1 encodes enzymes for retrotransposition whereas no function can be assigned to ORF0 as it is not found in any other organism. A variety of experimental and in silico approaches were used to determine the origin of Retrosat2 and putative function of ORF0. Our data show that not only is Retrosat2 highly abundant in the Oryza genus, it may yet be active in rice. Homologs of Retrosat2 were identified in maize, sorghum, Arabidopsis and other plant genomes suggesting that the Retrosat2 family is of ancient origin. Several putatively cis-acting elements, some multicopy, that regulate retrotransposon replication or responsiveness to environmental factors were found in the LTRs of Retrosat2. Unlike the ORF1, the ORF0 sequences from Retrosat2 and homologs are divergent at the sequence level, 3D-structures and predicted biological functions. In contrast to other retrotransposon families, Retrosat2 and its homologs are dispersed throughout genomes and not concentrated in the specific chromosomal regions, such as centromeres. The genomic distribution of Retrosat2 homologs varies across species which likely reflects the differing evolutionary trajectories of this retrotransposon family across diverse species.


Asunto(s)
Variación Genética , Plantas/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Secuencia de Bases , Sitios de Unión/genética , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Genoma de Planta/genética , Hibridación Fluorescente in Situ , Modelos Moleculares , Sistemas de Lectura Abierta/genética , Oryza/clasificación , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas/clasificación , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad de la Especie
19.
J Vis ; 12(11)2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23104814

RESUMEN

Disparity vergence is commonly viewed as being controlled by at least two mechanisms, an open-loop vergence-specific burst mechanism analogous to the ballistic drive of saccades, and a closed-loop feedback mechanism controlled by the disparity error. We show that human vergence dynamics for disparity jumps of a large textured field have a typical time course consistent with predominant control by the open-loop vergence-specific burst mechanism, although various subgroups of the population show radically different vergence behaviors. Some individuals show markedly slow divergence responses, others slow convergence responses, others slow responses in both vergence directions, implying that the two vergence directions have separate control mechanisms. The faster time courses usually had time-symmetric velocity waveforms implying open-loop burst control, while the slow response waveforms were usually time-asymmetric implying closed-loop feedback control. A further type of behavior seen in a distinct subpopulation was a compound anomalous divergence response consisting of an initial convergence movement followed by a large corrective divergence movement with time courses implying closed-loop feedback control. This analysis of the variety of human vergence responses thus contributes substantially to the understanding of the oculomotor control mechanisms underlying the generation of vergence movements [corrected].


Asunto(s)
Convergencia Ocular/fisiología , Movimientos Sacádicos/fisiología , Disparidad Visual/fisiología , Visión Binocular/fisiología , Adulto , Retroalimentación , Humanos , Persona de Mediana Edad , Adulto Joven
20.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20075913

RESUMEN

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Asunto(s)
Genoma de Planta/genética , Genómica , Glycine max/genética , Poliploidía , Arabidopsis/genética , Cruzamiento , Cromosomas de las Plantas/genética , Evolución Molecular , Duplicación de Gen , Genes Duplicados/genética , Genes de Plantas/genética , Datos de Secuencia Molecular , Familia de Multigenes/genética , Filogenia , Nodulación de la Raíz de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Aceite de Soja/biosíntesis , Sintenía/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...