Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039851

RESUMEN

Investigating the evolutionary trajectory of synapsid sensory and cephalic systems is pivotal for understanding the emergence and diversification of mammals. Recent studies using CT-scanning to analyze the rostral foramina and maxillary canals morphology in fossilized specimens of probainognathian cynodonts have contributed to clarifying the homology and paleobiological interpretations of these structures. In the present work, µCT-scannings of three specimens of Riograndia guaibensis, an early Norian cynodont from southern Brazil, were analyzed and revealed an incomplete separation between the lacrimal and maxillary canals, with points of contact via non-ossified areas. While the maxillary canal exhibits a consistent morphological pattern with other Prozostrodontia, featuring three main branches along the lateral region of the snout, the rostral alveolar canal in Riograndia displays variability in the number of extra branches terminating in foramina on the lateral surface of the maxilla, showing differences among individuals and within the same skull. Additionally, pneumatization is observed in the anterior region of the skull, resembling similar structures found in reptiles and mammals. Through this pneumatization, certain branches originating from the maxillary canal extend to the canine alveolus. Further investigation is warranted to elucidate the functionality of this structure and its occurrence in other cynodont groups.

2.
Sci Rep ; 14(1): 13817, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879680

RESUMEN

The nasal cavity of living mammals is a unique structural complex among tetrapods, acquired along a series of major morphological transformations that occurred mainly during the Mesozoic Era, within the Synapsida clade. Particularly, non-mammaliaform cynodonts document several morphological changes in the skull, during the Triassic Period, that represent the first steps of the mammalian bauplan. We here explore the nasal cavity of five cynodont taxa, namely Thrinaxodon, Chiniquodon, Prozostrodon, Riograndia, and Brasilodon, in order to discuss the main changes within this skull region. We did not identify ossified turbinals in the nasal cavity of these taxa and if present, as non-ossified structures, they would not necessarily be associated with temperature control or the development of endothermy. We do, however, notice a complexification of the cartilage anchoring structures that divide the nasal cavity and separate it from the brain region in these forerunners of mammals.


Asunto(s)
Fósiles , Mamíferos , Cráneo , Cornetes Nasales , Microtomografía por Rayos X , Animales , Mamíferos/anatomía & histología , Fósiles/anatomía & histología , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , América del Sur , Cornetes Nasales/anatomía & histología , Cornetes Nasales/diagnóstico por imagen , Evolución Biológica , Cavidad Nasal/anatomía & histología , Cavidad Nasal/diagnóstico por imagen , Filogenia
5.
Bioessays ; 44(4): e2100060, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170781

RESUMEN

We suggest that mammalian endothermy was established amongst Middle Jurassic crown mammals, through reviewing state-of-the-art fossil and living mammal studies. This is considerably later than the prevailing paradigm, and has important ramifications for the causes, pattern, and pace of physiological evolution amongst synapsids. Most hypotheses argue that selection for either enhanced aerobic activity, or thermoregulation was the primary driver for synapsid physiological evolution, based on a range of fossil characters that have been linked to endothermy. We argue that, rather than either alternative being the primary selective force for the entirety of endothermic evolution, these characters evolved quite independently through time, and across the mammal family tree, principally as a response to shifting environmental pressures and ecological opportunities. Our interpretations can be tested using closely linked proxies for both factors, derived from study of fossils of a range of Jurassic and Cretaceous mammaliaforms and early mammals.


Asunto(s)
Evolución Biológica , Mamíferos , Animales , Fósiles , Mamíferos/fisiología , Filogenia
6.
PLoS One ; 16(11): e0249743, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34735460

RESUMEN

Cementum, the tissue attaching mammal tooth roots to the periodontal ligament, grows appositionally throughout life, displaying a series of circum-annual incremental features. These have been studied for decades as a direct record of chronological lifespan. The majority of previous studies on cementum have used traditional thin-section histological methods to image and analyse increments. However, several caveats have been raised in terms of studying cementum increments in thin-sections. Firstly, the limited number of thin-sections and the two-dimensional perspective they impart provide an incomplete interpretation of cementum structure, and studies often struggle or fail to overcome complications in increment patterns that complicate or inhibit increment counting. Increments have been repeatedly shown to both split and coalesce, creating accessory increments that can bias increment counts. Secondly, identification and counting of cementum increments using human vision is subjective, and it has led to inaccurate readings in several experiments studying individuals of known age. Here, we have attempted to optimise a recently introduced imaging modality for cementum imaging; X-ray propagation-based phase-contrast imaging (PPCI). X-ray PPCI was performed for a sample of rhesus macaque (Macaca mulatta) lower first molars (n = 10) from a laboratory population of known age. PPCI allowed the qualitative identification of primary/annual versus intermittent secondary increments formed by splitting/coalescence. A new method for semi-automatic increment counting was then integrated into a purpose-built software package for studying cementum increments, to count increments in regions with minimal complications. Qualitative comparison with data from conventional cementochronology, based on histological examination of tissue thin-sections, confirmed that X-ray PPCI reliably and non-destructively records cementum increments (given the appropriate preparation of specimens prior to X-ray imaging). Validation of the increment counting algorithm suggests that it is robust and provides accurate estimates of increment counts. In summary, we show that our new increment counting method has the potential to overcome caveats of conventional cementochronology approaches, when used to analyse three-dimensional images provided by X-ray PPCI.


Asunto(s)
Algoritmos , Cemento Dental/diagnóstico por imagen , Diente Molar/diagnóstico por imagen , Sincrotrones , Tomografía Computarizada por Rayos X , Animales , Macaca mulatta
7.
Commun Biol ; 4(1): 242, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623117

RESUMEN

Jaw morphology is closely linked to both diet and biomechanical performance, and jaws are one of the most common Mesozoic mammal fossil elements. Knowledge of the dietary and functional diversity of early mammals informs on the ecological structure of palaeocommunities throughout the longest era of mammalian evolution: the Mesozoic. Here, we analyse how jaw shape and mechanical advantage of the masseter (MAM) and temporalis (MAT) muscles relate to diet in 70 extant and 45 extinct mammals spanning the Late Triassic-Late Cretaceous. In extant mammals, jaw shape discriminates well between dietary groups: insectivores have long jaws, carnivores intermediate to short jaws, and herbivores have short jaws. Insectivores have low MAM and MAT, carnivores have low MAM and high MAT, and herbivores have high MAM and MAT. These traits are also informative of diet among Mesozoic mammals (based on previous independent determinations of diet) and set the basis for future ecomorphological studies.


Asunto(s)
Dieta , Dinosaurios/anatomía & histología , Conducta Alimentaria , Fósiles/anatomía & histología , Maxilares/anatomía & histología , Masticación , Adaptación Biológica , Animales , Fenómenos Biomecánicos , Carnivoría , Extinción Biológica , Preferencias Alimentarias , Herbivoria , Músculo Masetero/anatomía & histología
8.
J R Soc Interface ; 17(172): 20200538, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33234064

RESUMEN

Cementum is a mineralized dental tissue common to mammals that grows throughout life, following a seasonally appositional rhythm. Each year, one thick translucent increment and one thin opaque increment is deposited, offering a near-complete record of an animal's life history. Male and female mammals exhibit significant differences in oral health, due to the contrasting effects of female versus male sex hormones. Oestrogen and progesterone have a range of negative effects on oral health that extends to the periodontium and cementum growth interface. Here, we use synchrotron radiation-based X-ray tomography to image the cementum of a sample of rhesus macaque (Macaca mulatta) teeth from individuals of known life history. We found that increased breeding history in females corresponds with increased increment tortuosity and less organized cementum structure, when compared to male and juvenile cementum. We quantified structural differences by measuring the greyscale 'texture' of cementum and comparing results using principal components analysis. Adult females and males occupy discrete regions of texture space with no overlap. Females with known pregnancy records also have significantly different cementum when compared with non-breeding and juvenile females. We conclude that several aspects of cementum structure and texture may reflect differences in sexual life history in primates.


Asunto(s)
Sincrotrones , Diente , Animales , Cemento Dental/diagnóstico por imagen , Femenino , Macaca mulatta , Masculino , Tomografía por Rayos X
9.
Nat Commun ; 11(1): 5121, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046697

RESUMEN

Despite considerable advances in knowledge of the anatomy, ecology and evolution of early mammals, far less is known about their physiology. Evidence is contradictory concerning the timing and fossil groups in which mammalian endothermy arose. To determine the state of metabolic evolution in two of the earliest stem-mammals, the Early Jurassic Morganucodon and Kuehneotherium, we use separate proxies for basal and maximum metabolic rate. Here we report, using synchrotron X-ray tomographic imaging of incremental tooth cementum, that they had maximum lifespans considerably longer than comparably sized living mammals, but similar to those of reptiles, and so they likely had reptilian-level basal metabolic rates. Measurements of femoral nutrient foramina show Morganucodon had blood flow rates intermediate between living mammals and reptiles, suggesting maximum metabolic rates increased evolutionarily before basal metabolic rates. Stem mammals lacked the elevated endothermic metabolism of living mammals, highlighting the mosaic nature of mammalian physiological evolution.


Asunto(s)
Mamíferos/fisiología , Reptiles/fisiología , Animales , Metabolismo Basal , Evolución Biológica , Fósiles/anatomía & histología , Fósiles/historia , Historia Antigua , Mamíferos/clasificación , Filogenia , Tomografía por Rayos X , Diente/anatomía & histología , Diente/química
10.
J R Soc Interface ; 16(161): 20190674, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31822222

RESUMEN

Finite-element (FE) analysis has been used in palaeobiology to assess the mechanical performance of the jaw. It uses two types of models: tomography-based three-dimensional (3D) models (very accurate, not always accessible) and two-dimensional (2D) models (quick and easy to build, good for broad-scale studies, cannot obtain absolute stress and strain values). Here, we introduce extruded FE models, which provide fairly accurate mechanical performance results, while remaining low-cost, quick and easy to build. These are simplified 3D models built from lateral outlines of a relatively flat jaw and extruded to its average width. There are two types: extruded (flat mediolaterally) and enhanced extruded (accounts for width differences in the ascending ramus). Here, we compare mechanical performance values resulting from four types of FE models (i.e. tomography-based 3D, extruded, enhanced extruded and 2D) in Morganucodon and Kuehneotherium. In terms of absolute values, both types of extruded model perform well in comparison to the tomography-based 3D models, but enhanced extruded models perform better. In terms of overall patterns, all models produce similar results. Extruded FE models constitute a viable alternative to the use of tomography-based 3D models, particularly in relatively flat bones.


Asunto(s)
Análisis de Elementos Finitos , Maxilares/anatomía & histología , Maxilares/fisiología , Mamíferos/anatomía & histología , Mamíferos/fisiología , Modelos Biológicos , Animales , Fósiles , Músculo Esquelético/anatomía & histología , Músculo Esquelético/fisiología
11.
Nature ; 561(7724): 533-537, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30224748

RESUMEN

The evolution of the mammalian jaw is one of the most important innovations in vertebrate history, and underpins the exceptional radiation and diversification of mammals over the last 220 million years1,2. In particular, the transformation of the mandible into a single tooth-bearing bone and the emergence of a novel jaw joint-while incorporating some of the ancestral jaw bones into the mammalian middle ear-is often cited as a classic example of the repurposing of morphological structures3,4. Although it is remarkably well-documented in the fossil record, the evolution of the mammalian jaw still poses the paradox of how the bones of the ancestral jaw joint could function both as a joint hinge for powerful load-bearing mastication and as a mandibular middle ear that was delicate enough for hearing. Here we use digital reconstructions, computational modelling and biomechanical analyses to demonstrate that the miniaturization of the early mammalian jaw was the primary driver for the transformation of the jaw joint. We show that there is no evidence for a concurrent reduction in jaw-joint stress and increase in bite force in key non-mammaliaform taxa in the cynodont-mammaliaform transition, as previously thought5-8. Although a shift in the recruitment of the jaw musculature occurred during the evolution of modern mammals, the optimization of mandibular function to increase bite force while reducing joint loads did not occur until after the emergence of the neomorphic mammalian jaw joint. This suggests that miniaturization provided a selective regime for the evolution of the mammalian jaw joint, followed by the integration of the postdentary bones into the mammalian middle ear.


Asunto(s)
Evolución Biológica , Oído Medio/anatomía & histología , Mamíferos/anatomía & histología , Mandíbula/anatomía & histología , Animales , Oído Medio/fisiología , Fósiles , Mamíferos/fisiología , Mandíbula/fisiología , Modelos Biológicos , Filogenia , Articulación Temporomandibular/anatomía & histología , Articulación Temporomandibular/fisiología , Diente/anatomía & histología , Diente/fisiología
12.
Nature ; 512(7514): 303-5, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25143112

RESUMEN

The origin and radiation of mammals are key events in the history of life, with fossils placing the origin at 220 million years ago, in the Late Triassic period. The earliest mammals, representing the first 50 million years of their evolution and including the most basal taxa, are widely considered to be generalized insectivores. This implies that the first phase of the mammalian radiation--associated with the appearance in the fossil record of important innovations such as heterodont dentition, diphyodonty and the dentary-squamosal jaw joint--was decoupled from ecomorphological diversification. Finds of exceptionally complete specimens of later Mesozoic mammals have revealed greater ecomorphological diversity than previously suspected, including adaptations for swimming, burrowing, digging and even gliding, but such well-preserved fossils of earlier mammals do not exist, and robust analysis of their ecomorphological diversity has previously been lacking. Here we present the results of an integrated analysis, using synchrotron X-ray tomography and analyses of biomechanics, finite element models and tooth microwear textures. We find significant differences in function and dietary ecology between two of the earliest mammaliaform taxa, Morganucodon and Kuehneotherium--taxa that are central to the debate on mammalian evolution. Morganucodon possessed comparatively more forceful and robust jaws and consumed 'harder' prey, comparable to extant small-bodied mammals that eat considerable amounts of coleopterans. Kuehneotherium ingested a diet comparable to extant mixed feeders and specialists on 'soft' prey such as lepidopterans. Our results reveal previously hidden trophic specialization at the base of the mammalian radiation; hence even the earliest mammaliaforms were beginning to diversify--morphologically, functionally and ecologically. In contrast to the prevailing view, this pattern suggests that lineage splitting during the earliest stages of mammalian evolution was associated with ecomorphological specialization and niche partitioning.


Asunto(s)
Dieta/historia , Conducta Alimentaria , Fósiles , Maxilares/anatomía & histología , Mamíferos/anatomía & histología , Mamíferos/fisiología , Diente/anatomía & histología , Adaptación Fisiológica , Animales , Quirópteros/anatomía & histología , Quirópteros/fisiología , Dieta/veterinaria , Historia Antigua , Maxilares/fisiología , Tomografía por Rayos X , Diente/fisiología
13.
Biol Lett ; 8(1): 119-22, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21865242

RESUMEN

Models are a principal tool of modern science. By definition, and in practice, models are not literal representations of reality but provide simplifications or substitutes of the events, scenarios or behaviours that are being studied or predicted. All models make assumptions, and palaeontological models in particular require additional assumptions to study unobservable events in deep time. In the case of functional analysis, the degree of missing data associated with reconstructing musculoskeletal anatomy and neuronal control in extinct organisms has, in the eyes of some scientists, rendered detailed functional analysis of fossils intractable. Such a prognosis may indeed be realized if palaeontologists attempt to recreate elaborate biomechanical models based on missing data and loosely justified assumptions. Yet multiple enabling methodologies and techniques now exist: tools for bracketing boundaries of reality; more rigorous consideration of soft tissues and missing data and methods drawing on physical principles that all organisms must adhere to. As with many aspects of science, the utility of such biomechanical models depends on the questions they seek to address, and the accuracy and validity of the models themselves.


Asunto(s)
Fósiles , Modelos Biológicos , Fenómenos Fisiológicos Musculoesqueléticos , Paleontología/métodos , Animales , Fenómenos Biomecánicos/fisiología , Conducta Alimentaria/fisiología , Locomoción/fisiología
14.
J Morphol ; 272(1): 50-65, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20960463

RESUMEN

The mammalian cingulum is a shelf of enamel, which rings the base of the molar crown (fully or partially). Certain nonmammalian cynodonts show precursors of this structure, indicating that it may be an important dental character in the origins of mammals. However, there is little consensus as to what drove the initial evolution of the cingulum. Recent work on physical modeling of fracture mechanics has shown that structures which approximate mammalian dentition (hard enamel shell surrounding a softer/tougher dentine interior) undergo specific fracture patterns dependent on the material properties of the food items. Soft materials result in fractures occurring at the base of the stiff shell away from the contact point due to heightened tensile strains. These tensile strains occur around the margin in the region where cingula develop. In this article, we test whether the presence of a cingulum structure will reduce the tensile strains seen in enamel using basic finite element models of bilayered cones. Finite element models of generic cone shaped "teeth" were created both with and without cingula of various shapes and sizes. Various forces were applied to the models to examine the relative magnitudes and directions of average maximum principal strain in the enamel. The addition of a cingulum greatly reduces tensile strains in the enamel caused by "soft-food" forces. The relative shape and size of the cingulum has a strong effect on strain magnitudes as well. Scaling issues between shapes are explored and show that the effectiveness of a given cingulum to reducing tensile strains is dependent on how the cingulum is created. Partial cingula, which only surround a portion of the tooth, are shown to be especially effective at reducing strain caused by asymmetrical loads, and shed new light on the potential early function and evolution of mammalian dentitions.


Asunto(s)
Esmalte Dental/anatomía & histología , Fracturas de los Dientes/etiología , Dentición , Análisis de Elementos Finitos , Dureza , Modelos Anatómicos , Diente Molar/anatomía & histología , Resistencia a la Tracción , Diente/anatomía & histología , Corona del Diente/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA