Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(5): 117, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700534

RESUMEN

KEY MESSAGE: A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.


Asunto(s)
Mapeo Cromosómico , Haploidia , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Mapeo Cromosómico/métodos , Fitomejoramiento , Genoma de Planta , Fenotipo , Alelos , Cromosomas de las Plantas/genética , Genes de Plantas
3.
Methods Mol Biol ; 2288: 25-48, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270003

RESUMEN

Doubled haploid (DH) technology produces strictly homozygous fertile plant thanks to doubling the chromosomes of a haploid embryo/seedling. Haploid embryos are derived from either male or female germ line cells and hold only half the number of chromosomes found in somatic plant tissues, albeit in a recombinant form due to meiotic genetic shuffling. DH production allows to rapidly fix these recombinant haploid genomes in the form of perfectly homozygous plants (inbred lines), which are produced in two rather than six or more generations. Thus, DH breeding enables fast evaluation of phenotypic traits on homogenous progeny. While for most crops haploid embryos are produced by costly and often genotype-dependent in vitro methods, for maize, two unique in planta systems are available to induce haploid embryos directly in the seed. Two "haploid inducer lines", identified from spontaneous maize mutants, are able to induce embryos of paternal or maternal origin. Although effortless crosses with lines of interest are sufficient to trigger haploid embryos, substantial improvements were necessary to bring DH technology to large scale production. They include the development of modern haploid inducer lines with high induction rates (8-12%), and methods to sort kernels with haploid embryos from the normal ones. Chromosome doubling represents also a crucial step in the DH process. Recent identification of genomic loci involved in spontaneous doubling opens up perspectives for a fully in planta DH pipeline in maize. Although discovered more than 60 years ago, maize haploid inducer lines still make headlines thanks to novel applications and findings. Indeed, maternal haploid induction was elegantly diverted to deliver genome editing machinery in germplasm recalcitrant to transformation techniques. The recent discovery of two molecular players controlling haploid induction allowed to revisit the mechanistic basis of maize maternal haploid induction and to successfully translate haploid induction ability to other crops.


Asunto(s)
Fitomejoramiento/métodos , Zea mays/genética , Cromosomas de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Cruzamientos Genéticos , Diploidia , Edición Génica , Genoma de Planta , Haploidia , Homocigoto , Vigor Híbrido , Modelos Genéticos , Biología Molecular/métodos , Fenotipo , Semillas/genética , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
4.
J Cell Biol ; 220(10)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34323919

RESUMEN

Phospholipases cleave phospholipids, major membrane constituents. They are thus essential for many developmental processes, including male gamete development. In flowering plants, mutation of phospholipase NOT-LIKE-DAD (NLD, also known as MTL or ZmPLA1) leads to peculiar defects in sexual reproduction, notably the induction of maternal haploid embryos. Contrary to previous reports, NLD does not localize to cytosol and plasma membrane of sperm cells but to the pollen endo-plasma membrane (endo-PM), a specific membrane derived from the PM of the pollen vegetative cell that encircles the two sperm cells. After pollen tube burst, NLD localizes at the apical region of the egg apparatus. Pharmacological approaches coupled with targeted mutagenesis revealed that lipid anchoring together with electrostatic interactions are involved in the attachment of NLD to this atypical endo-PM. Membrane surface-charge and lipid biosensors indicated that phosphatidylinositol-4,5-bisphosphate is enriched in the endo-PM, uncovering a unique example of how membrane electrostatic properties can define a specific polar domain (i.e., endo-PM), which is critical for plant reproduction and gamete formation.


Asunto(s)
Membrana Celular/metabolismo , Lípidos/química , Fosfolipasas A/metabolismo , Polen/metabolismo , Zea mays/enzimología , Electricidad Estática
5.
Nat Plants ; 6(6): 610-619, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32514145

RESUMEN

Mixing maternal and paternal genomes in embryos is not only responsible for the evolutionary success of sexual reproduction, but is also a cornerstone of plant breeding. However, once an interesting gene combination is obtained, further genetic mixing is problematic. To rapidly fix genetic information, doubled haploid plants can be produced: haploid embryos having solely the genetic information from one parent are allowed to develop, and chromosome doubling generates fully homozygous plants. A powerful path to the production of doubled haploids is based on haploid inducer lines. A simple cross between a haploid inducer line and the line with gene combinations to be fixed will trigger haploid embryo development. However, the exact mechanism behind in planta haploid induction remains an enduring mystery. The recent discoveries of molecular actors triggering haploid induction in the maize crop and the model Arabidopsis thaliana pinpoint an essential role of processes related to gamete development, gamete interactions and genome stability. These findings enabled translation of haploid induction capacity to other crops as well as the use of haploid inducer lines to deliver genome editing machinery into various crop varieties. These recent advances not only hold promise for the next generations of plant breeding strategies, but they also provide a deeper insight into the fundamental bases of sexual reproduction in plants.


Asunto(s)
Haploidia , Fenotipo , Fitomejoramiento , Productos Agrícolas/genética , Reproducción/genética
6.
Plant Cell Rep ; 38(4): 487-501, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30684023

RESUMEN

KEY MESSAGE: The analysis of 93 mutant alleles in 18 genes demonstrated that CRISPR-Cas9 is a robust tool for targeted mutagenesis in maize, permitting efficient generation of single and multiple knockouts. CRISPR-Cas9 technology is a simple and efficient tool for targeted mutagenesis of the genome. It has been implemented in many plant species, including crops such as maize. Here we report single- and multiple-gene mutagenesis via stably transformed maize plants. Two different CRISPR-Cas9 vectors were used allowing the expression of multiple guide RNAs and different strategies to knockout either independent or paralogous genes. A total of 12 plasmids, representing 28 different single guide RNAs (sgRNAs), were generated to target 20 genes. For 18 of these genes, at least one mutant allele was obtained, while two genes were recalcitrant to sequence editing. 19% (16/83) of mutant plants showed biallelic mutations. Small insertions or deletions of less than ten nucleotides were most frequently observed, regardless of whether the gene was targeted by one or more sgRNAs. Deletions of defined regions located between the target sites of two guide RNAs were also reported although the exact deletion size was variable. Double and triple mutants were created in a single step, which is especially valuable for functional analysis of genes with strong genetic linkage. Off-target effects were theoretically limited due to rigorous sgRNA design and random experimental checks at three potential off-target sites did not reveal any editing. Sanger chromatograms allowed to unambiguously class the primary transformants; the majority (85%) were fully edited plants transmitting systematically all detected mutations to the next generation, generally following Mendelian segregation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas de Inactivación de Genes/métodos , Zea mays/genética , Edición Génica , Genoma de Planta/genética , Mutagénesis/genética
7.
Curr Biol ; 27(20): R1095-R1097, 2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065285

RESUMEN

Gilles et al. introduce the technique of haploid induction in plant breeding.


Asunto(s)
Productos Agrícolas/genética , Haploidia , Fitomejoramiento , Zea mays/genética , Fitomejoramiento/métodos
8.
EMBO J ; 36(6): 707-717, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28228439

RESUMEN

Gynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene NOT LIKE DAD (NLD) coding for a patatin-like phospholipase A. In all surveyed inducer lines, NLD carries a 4-bp insertion leading to a predicted truncated protein. This frameshift mutation is responsible for haploid induction because complementation with wild-type NLD abolishes the haploid induction capacity. Activity of the NLD promoter is restricted to mature pollen and pollen tube. The translational NLD::citrine fusion protein likely localizes to the sperm cell plasma membrane. In Arabidopsis roots, the truncated protein is no longer localized to the plasma membrane, contrary to the wild-type NLD protein. In conclusion, an intact pollen-specific phospholipase is required for successful sexual reproduction and its targeted disruption may allow establishing powerful haploid breeding tools in numerous crops.


Asunto(s)
Óvulo Vegetal/crecimiento & desarrollo , Fosfolipasas/metabolismo , Proteínas de Plantas/metabolismo , Polen/enzimología , Reproducción , Zea mays/fisiología , Regulación de la Expresión Génica de las Plantas , Fosfolipasas/deficiencia , Zea mays/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA