Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(764): eado4463, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259810

RESUMEN

Neuromuscular blocking agents (NMBAs) relax skeletal muscles to facilitate surgeries and ease intubation but can lead to adverse reactions, including complications because of postoperative residual neuromuscular blockade (rNMB) and, in rare cases, anaphylaxis. Both adverse reactions vary between types of NMBAs, with rocuronium, a widely used nondepolarizing NMBA, inducing one of the longest rNMB durations and highest anaphylaxis incidences. rNMB induced by rocuronium can be reversed by the synthetic γ-cyclodextrin sugammadex. However, in rare cases, sugammadex can provoke anaphylaxis. Thus, additional therapeutic options are needed. Rocuronium-induced anaphylaxis is proposed to rely on preexisting rocuronium-binding antibodies. To understand the pathogenesis of rocuronium-induced anaphylaxis and to identify potential therapeutics, we investigated the memory B cell antibody repertoire of patients with suspected hypersensitivity to rocuronium. We identified polyclonal antibody repertoires with a high diversity among V(D)J genes without evidence of clonal groups. When recombinantly expressed, these antibodies demonstrated specificity and low affinity for rocuronium without cross-reactivity for other NMBAs. Moreover, when these antibodies were expressed as human immunoglobulin E (IgE), they triggered human mast cell activation and passive systemic anaphylaxis in transgenic mice, although their affinities were insufficient to serve as reversal agents. Rocuronium-specific, high-affinity antibodies were thus isolated from rocuronium-immunized mice. The highest-affinity antibody was able to reverse rocuronium-induced neuromuscular blockade in nonhuman primates with kinetics comparable to that of sugammadex. Together, these data support the hypothesis that antibodies cause anaphylactic reactions to rocuronium and pave the way for improved diagnostics and neuromuscular blockade reversal agents.


Asunto(s)
Anafilaxia , Rocuronio , Rocuronio/efectos adversos , Animales , Humanos , Anafilaxia/inmunología , Anticuerpos , Ratones , Periodo Perioperatorio , Androstanoles/efectos adversos , Sugammadex/efectos adversos , Inmunoglobulina E/inmunología , Especificidad de Anticuerpos , Femenino , Modelos Animales de Enfermedad , Masculino
2.
J Immunol ; 212(1): 13-23, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991425

RESUMEN

4-Octyl itaconate (4-OI) is a derivative of the Krebs cycle-derived metabolite itaconate and displays an array of antimicrobial and anti-inflammatory properties through modifying cysteine residues within protein targets. We have found that 4-OI significantly reduces the production of eosinophil-targeted chemokines in a variety of cell types, including M1 and M2 macrophages, Th2 cells, and A549 respiratory epithelial cells. Notably, the suppression of these chemokines in M1 macrophages was found to be NRF2-dependent. In addition, 4-OI can interfere with IL-5 signaling and directly affect eosinophil differentiation. In a model of eosinophilic airway inflammation in BALB/c mice, 4-OI alleviated airway resistance and reduced eosinophil recruitment to the lungs. Our findings suggest that itaconate derivatives could be promising therapeutic agents for the treatment of eosinophilic asthma.


Asunto(s)
Eosinófilos , Eosinofilia Pulmonar , Ratones , Animales , Eosinofilia Pulmonar/tratamiento farmacológico , Quimiocinas , Inflamación/tratamiento farmacológico
4.
J Immunol ; 209(7): 1243-1251, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36165182

RESUMEN

Mouse models of active systemic anaphylaxis rely predominantly on IgG Abs forming IgG-allergen immune complexes that induce IgG receptor-expressing neutrophils and monocytes/macrophages to release potent mediators, leading to systemic effects. Whether anaphylaxis initiates locally or systemically remains unknown. In this study, we aimed at identifying the anatomical location of IgG-allergen immune complexes during anaphylaxis. Active systemic anaphylaxis was induced following immunization with BSA and i.v. challenge with fluorescently labeled BSA. Ag retention across different organs was examined using whole-body fluorescence imaging, comparing immunized and naive animals. Various mouse models and in vivo deletion strategies were employed to determine the contribution of IgG receptors, complement component C1q, myeloid cell types, and anaphylaxis mediators. We found that following challenge, Ag diffused systemically, but specifically accumulated in the lungs of mice sensitized to that Ag, where it formed large Ab-dependent aggregates in the vasculature. Ag retention in the lungs did not rely on IgG receptors, C1q, neutrophils, or macrophages. IgG2a-mediated, but neither IgG1- nor IgG2b-mediated, passive systemic anaphylaxis led to Ag retention in the lung. Neutrophils and monocytes significantly accumulated in the lungs after challenge and captured high amounts of Ag, which led to downmodulation of surface IgG receptors and triggered their activation. Thus, within minutes of systemic injection in sensitized mice, Ag formed aggregates in the lung and liver vasculature, but accumulated specifically and dose-dependently in the lung. Neutrophils and monocytes recruited to the lung captured Ag and became activated. However, Ag aggregation in the lung vasculature was not necessary for anaphylaxis induction.


Asunto(s)
Anafilaxia , Alérgenos , Animales , Complejo Antígeno-Anticuerpo , Complemento C1q , Modelos Animales de Enfermedad , Inmunoglobulina G , Pulmón , Ratones , Ratones Endogámicos C57BL , Receptores de Complemento , Receptores de IgG
5.
Am J Respir Crit Care Med ; 204(6): 667-681, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133911

RESUMEN

Rationale: Necroptosis, mediated by RIPK3 (receptor-interacting protein kinase 3) and MLKL (mixed lineage kinase domain-like), is a form of regulated necrosis that can drive tissue inflammation and destruction; however, its contribution to chronic obstructive pulmonary disease (COPD) pathogenesis is poorly understood. Objectives: To determine the role of necroptosis in COPD. Methods: Total and active (phosphorylated) RIPK3 and MLKL were measured in the lung tissue of patients with COPD and control subjects without COPD. Necroptosis-related mRNA and proteins as well as cell death were examined in lungs and pulmonary macrophages of mice with cigarette smoke (CS)-induced experimental COPD. The responses of Ripk3-/- and Mlkl-/- mice to acute and chronic CS exposure were compared with those of wild-type mice. The combined inhibition of apoptosis (with the pan-caspase inhibitor quinoline-Val-Asp-difluorophenoxymethylketone [qVD-OPh]) and necroptosis (with deletion of Mlkl in mice) was assessed. Measurements and Main Results: The total MLKL protein in the epithelium and macrophages and the pRIPK3 and pMLKL in lung tissue were increased in patients with severe COPD compared with never-smokers or smoker control subjects without COPD. Necroptosis-related mRNA and protein levels were increased in the lungs and macrophages in CS-exposed mice and experimental COPD. Ripk3 or Mlkl deletion prevented airway inflammation upon acute CS exposure. Ripk3 deficiency reduced airway inflammation and remodeling as well as the development of emphysematous pathology after chronic CS exposure. Mlkl deletion and qVD-OPh treatment reduced chronic CS-induced airway inflammation, but only Mlkl deletion prevented airway remodeling and emphysema. Ripk3 or Mlkl deletion and qVD-OPh treatment reduced CS-induced lung-cell death. Conclusions: Necroptosis is induced by CS exposure and is increased in the lungs of patients with COPD and in experimental COPD. Inhibiting necroptosis attenuates CS-induced airway inflammation, airway remodeling, and emphysema. Targeted inhibition of necroptosis is a potential therapeutic strategy in COPD.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Fumar Cigarrillos/efectos adversos , Inflamación/etiología , Necroptosis , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/etiología , Animales , Estudios de Casos y Controles , Progresión de la Enfermedad , Humanos , Inflamación/metabolismo , Inflamación/fisiopatología , Modelos Lineales , Ratones , Proteínas Quinasas/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/fisiopatología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal
6.
Nat Commun ; 10(1): 5031, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695028

RESUMEN

The pharmacokinetic properties of antibodies are largely dictated by the pH-dependent binding of the IgG fragment crystallizable (Fc) domain to the human neonatal Fc receptor (hFcRn). Engineered Fc domains that confer a longer circulation half-life by virtue of more favorable pH-dependent binding to hFcRn are of great therapeutic interest. Here we developed a pH Toggle switch Fc variant containing the L309D/Q311H/N434S (DHS) substitutions, which exhibits markedly improved pharmacokinetics relative to both native IgG1 and widely used half-life extension variants, both in conventional hFcRn transgenic mice and in new knock-in mouse strains. engineered specifically to recapitulate all the key processes relevant to human antibody persistence in circulation, namely: (i) physiological expression of hFcRn, (ii) the impact of hFcγRs on antibody clearance and (iii) the role of competing endogenous IgG. DHS-IgG retains intact effector functions, which are important for the clearance of target pathogenic cells and also has favorable developability.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/farmacología , Ingeniería de Proteínas , Receptores Fc/química , Receptores Fc/genética , Animales , Ingeniería Genética , Semivida , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Concentración de Iones de Hidrógeno , Inmunoglobulina G/química , Inmunoglobulina G/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Farmacocinética , Dominios Proteicos , Receptores Fc/inmunología , Proteínas Recombinantes
8.
Sci Transl Med ; 11(500)2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292264

RESUMEN

Anaphylaxis is a systemic acute hypersensitivity reaction that is considered to depend on allergen-specific immunoglobulin E (IgE) antibodies and histamine release by mast cells and basophils. Nevertheless, allergen-specific IgG antibodies have been proposed to contribute when the allergen is an abundant circulating large molecule, e.g., after infusions of therapeutic antibodies or dextran. Data from animal models demonstrate a pathway involving platelet-activating factor (PAF) release by monocytes/macrophages and neutrophils activated via their Fc gamma receptors (FcγRs). We hypothesized that such a pathway may also apply to small drugs and could be responsible for non-IgE-mediated anaphylaxis and influence anaphylaxis severity in humans. We prospectively conducted a multicentric study of 86 patients with suspected anaphylaxis to neuromuscular-blocking agents (NMBAs) during general anesthesia and 86 matched controls. We found that concentrations of anti-NMBA IgG and markers of FcγR activation, PAF release, and neutrophil activation correlated with anaphylaxis severity. Neutrophils underwent degranulation and NETosis early after anaphylaxis onset, and plasma-purified anti-NMBA IgG triggered neutrophil activation ex vivo in the presence of NMBA. Neutrophil activation could also be observed in patients lacking evidence of classical IgE-dependent anaphylaxis. This study supports the existence of an IgG-neutrophil pathway in human NMBA-induced anaphylaxis, which may aggravate anaphylaxis in combination with the IgE pathway or underlie anaphylaxis in the absence of specific IgE. These results reconcile clinical and experimental data on the role of antibody classes in anaphylaxis and could inform diagnostic approaches to NMBA-induced acute hypersensitivity reactions.


Asunto(s)
Anafilaxia/inducido químicamente , Anafilaxia/inmunología , Inmunoglobulina G/metabolismo , Activación Neutrófila/inmunología , Adulto , Anciano , Anafilaxia/patología , Especificidad de Anticuerpos/inmunología , Biomarcadores/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Humanos , Inmunoglobulina E/metabolismo , Masculino , Persona de Mediana Edad , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Bloqueantes Neuromusculares/farmacología , Activación Neutrófila/efectos de los fármacos , Factor de Activación Plaquetaria/metabolismo , Receptores de IgG/metabolismo , Índice de Severidad de la Enfermedad
9.
Med Sci (Paris) ; 34(4): 339-343, 2018 Apr.
Artículo en Francés | MEDLINE | ID: mdl-29658477

RESUMEN

Neutrophils play a key role in host defense against pathogens. They can contribute to pathological inflammation, and are thought to exacerbate tissue injury upon exposure to bacterial products, such as endotoxin (LPS). Recent findings suggest that neutrophils can also participate in adaptive immune responses and contribute to inflammation resolution. Many discoveries regarding the in vivo role of neutrophils were made possible by the use of genetically modified neutrophil-deficient mice, or by the use of neutrophil-depleting antibodies. Here we describe a new mouse model, PMNDTR mice, in which neutrophils can be selectively depleted upon injection of diphtheria toxin. Using this model, we have recently demonstrated that neutrophils play a protective role during lethal endotoxin-induced systemic shock. This new mouse model presents several major advantages over more classical models of neutropenia, which are discussed herein.


Asunto(s)
Modelos Animales de Enfermedad , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Ratones Transgénicos , Neutrófilos/metabolismo , Neutrófilos/fisiología , Animales , Toxina Diftérica , Resistencia a Medicamentos/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Humanos , Inflamación/genética , Inflamación/inmunología , Ratones , Neutropenia/inducido químicamente , Neutropenia/genética , Neutropenia/patología , Choque Séptico/genética , Choque Séptico/inmunología
10.
Sci Immunol ; 3(22)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29654057

RESUMEN

Platelets are key regulators of vascular integrity; however, their role in anaphylaxis, a life-threatening systemic allergic reaction characterized by the loss of vascular integrity and vascular leakage, remains unknown. Anaphylaxis is a consequence of inappropriate cellular responses triggered by antibodies to generally harmless antigens, resulting in a massive mediator release and rapidly occurring organ dysfunction. Human platelets express receptors for immunoglobulin G (IgG) antibodies and can release potent mediators, yet their contribution to anaphylaxis has not been previously addressed in mouse models, probably because mice do not express IgG receptors on platelets. We investigated the contribution of platelets to IgG-dependent anaphylaxis in human IgG receptor-expressing mouse models and a cohort of patients suffering from drug-induced anaphylaxis. Platelet counts dropped immediately and markedly upon anaphylaxis induction only when they expressed the human IgG receptor FcγRIIA/CD32A. Platelet depletion attenuated anaphylaxis, whereas thrombocythemia substantially worsened its severity. FcγRIIA-expressing platelets were directly activated by IgG immune complexes in vivo and were sufficient to restore susceptibility to anaphylaxis in resistant mice. Serotonin released by activated platelets contributed to anaphylaxis severity. Data from a cohort of patients suffering from drug-induced anaphylaxis indicated that platelet activation was associated with anaphylaxis severity and was accompanied by a reduction in circulating platelet numbers. Our findings identify platelets as critical players in IgG-dependent anaphylaxis and provide a rationale for the design of platelet-targeting strategies to attenuate the severity of anaphylactic reactions.


Asunto(s)
Anafilaxia/inmunología , Plaquetas/inmunología , Modelos Animales de Enfermedad , Receptores de IgG/inmunología , Anafilaxia/sangre , Anafilaxia/patología , Animales , Plaquetas/metabolismo , Humanos , Inmunoglobulina G/inmunología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Activación Plaquetaria , Recuento de Plaquetas , Receptores de IgG/genética , Receptores de IgG/metabolismo , Serotonina/sangre , Serotonina/inmunología , Índice de Severidad de la Enfermedad , Trombocitosis/sangre , Trombocitosis/inmunología
11.
J Exp Med ; 214(5): 1249-1258, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28385925

RESUMEN

Neutrophils have crucial antimicrobial functions but are also thought to contribute to tissue injury upon exposure to bacterial products, such as lipopolysaccharide (LPS). To study the role of neutrophils in LPS-induced endotoxemia, we developed a new mouse model, PMNDTR mice, in which injection of diphtheria toxin induces selective neutrophil ablation. Using this model, we found, surprisingly, that neutrophils serve to protect the host from LPS-induced lethal inflammation. This protective role was observed in conventional and germ-free animal facilities, indicating that it does not depend on a particular microbiological environment. Blockade or genetic deletion of myeloperoxidase (MPO), a key neutrophil enzyme, significantly increased mortality after LPS challenge, and adoptive transfer experiments confirmed that neutrophil-derived MPO contributes importantly to protection from endotoxemia. Our findings imply that, in addition to their well-established antimicrobial properties, neutrophils can contribute to optimal host protection by limiting the extent of endotoxin-induced inflammation in an MPO-dependent manner.


Asunto(s)
Endotoxemia/inmunología , Lipopolisacáridos/toxicidad , Neutrófilos/fisiología , Peroxidasa/fisiología , Animales , Anticuerpos/inmunología , Modelos Animales de Enfermedad , Endotoxemia/mortalidad , Ratones , Neutrófilos/enzimología , Sepsis/inmunología
12.
J Allergy Clin Immunol ; 139(1): 269-280.e7, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27246523

RESUMEN

BACKGROUND: Animal models have demonstrated that allergen-specific IgG confers sensitivity to systemic anaphylaxis that relies on IgG Fc receptors (FcγRs). Mouse IgG2a and IgG2b bind activating FcγRI, FcγRIII, and FcγRIV and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII and FcγRIIB. Although these interactions are of strikingly different affinities, these 3 IgG subclasses have been shown to enable induction of systemic anaphylaxis. OBJECTIVE: We sought to determine which pathways control the induction of IgG1-, IgG2a-, and IgG2b-dependent passive systemic anaphylaxis. METHODS: Mice were sensitized with IgG1, IgG2a, or IgG2b anti-trinitrophenyl mAbs and challenged with trinitrophenyl-BSA intravenously to induce systemic anaphylaxis that was monitored by using rectal temperature. Anaphylaxis was evaluated in mice deficient for FcγRs injected with mediator antagonists or in which basophils, monocytes/macrophages, or neutrophils had been depleted. FcγR expression was evaluated on these cells before and after anaphylaxis. RESULTS: Activating FcγRIII is the receptor primarily responsible for all 3 models of anaphylaxis, and subsequent downregulation of this receptor was observed. These models differentially relied on histamine release and the contribution of mast cells, basophils, macrophages, and neutrophils. Strikingly, basophil contribution and histamine predominance in mice with IgG1- and IgG2b-induced anaphylaxis correlated with the ability of inhibitory FcγRIIB to negatively regulate these models of anaphylaxis. CONCLUSION: We propose that the differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, neutrophils, and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results unravel novel complexities in the involvement and regulation of cell populations in IgG-dependent reactions in vivo.


Asunto(s)
Anafilaxia/inmunología , Inmunoglobulina G/inmunología , Subunidades de Proteína/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Femenino , Haptenos/inmunología , Histamina/inmunología , Inmunoglobulina E/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/inmunología , Receptores de IgG/genética , Receptores de IgG/inmunología , Albúmina Sérica Bovina/inmunología
13.
J Allergy Clin Immunol ; 139(4): 1253-1265.e14, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27568081

RESUMEN

BACKGROUND: Anaphylaxis can proceed through distinct IgE- or IgG-dependent pathways, which have been investigated in various mouse models. We developed a novel mouse strain in which the human low-affinity IgG receptor locus, comprising both activating (hFcγRIIA, hFcγRIIIA, and hFcγRIIIB) and inhibitory (hFcγRIIB) hFcγR genes, has been inserted into the equivalent murine locus, corresponding to a locus swap. OBJECTIVE: We sought to determine the capabilities of hFcγRs to induce systemic anaphylaxis and identify the cell types and mediators involved. METHODS: hFcγR expression on mouse and human cells was compared to validate the model. Passive systemic anaphylaxis was induced by injection of heat-aggregated human intravenous immunoglobulin and active systemic anaphylaxis after immunization and challenge. Anaphylaxis severity was evaluated based on hypothermia and mortality. The contribution of receptors, mediators, or cell types was assessed based on receptor blockade or depletion. RESULTS: The human-to-mouse low-affinity FcγR locus swap engendered hFcγRIIA/IIB/IIIA/IIIB expression in mice comparable with that seen in human subjects. Knock-in mice were susceptible to passive and active anaphylaxis, accompanied by downregulation of both activating and inhibitory hFcγR expression on specific myeloid cells. The contribution of hFcγRIIA was predominant. Depletion of neutrophils protected against hypothermia and mortality. Basophils contributed to a lesser extent. Anaphylaxis was inhibited by platelet-activating factor receptor or histamine receptor 1 blockade. CONCLUSION: Low-affinity FcγR locus-switched mice represent an unprecedented model of cognate hFcγR expression. Importantly, IgG-related anaphylaxis proceeds within a native context of activating and inhibitory hFcγRs, indicating that, despite robust hFcγRIIB expression, activating signals can dominate to initiate a severe anaphylactic reaction.


Asunto(s)
Anafilaxia/inmunología , Receptores de IgG/inmunología , Animales , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/inmunología , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL
14.
J Autoimmun ; 80: 95-102, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27745779

RESUMEN

Two activating mouse IgG receptors (FcγRs) have the ability to bind monomeric IgG, the high-affinity mouse FcγRI and FcγRIV. Despite high circulating levels of IgG, reports using FcγRI-/- or FcγRIV-/- mice or FcγRIV-blocking antibodies implicate these receptors in IgG-induced disease severity or therapeutic Ab efficacy. From these studies, however, one cannot conclude on the effector capabilities of a given receptor, because different activating FcγRs possess redundant properties in vivo, and cooperation between FcγRs may occur, or priming phenomena. To help resolve these uncertainties, we used mice expressing only FcγRI to determine its intrinsic properties in vivo. FcγRIonly mice were sensitive to IgG-induced autoimmune thrombocytopenia and anti-CD20 and anti-tumour immunotherapy, but resistant to IgG-induced autoimmune arthritis, anaphylaxis and airway inflammation. Our results show that the in vivo roles of FcγRI are more restricted than initially reported using FcγRI-/- mice, but confirm effector capabilities for this high-affinity IgG receptor in vivo.


Asunto(s)
Anticuerpos Bloqueadores/uso terapéutico , Linfocitos B/inmunología , Inmunoterapia/métodos , Púrpura Trombocitopénica Idiopática/inmunología , Receptores de IgG/metabolismo , Animales , Afinidad de Anticuerpos , Modelos Animales de Enfermedad , Hepatectomía , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Púrpura Trombocitopénica Idiopática/terapia , Receptores de IgG/genética , Esplenectomía
15.
J Autoimmun ; 73: 10-23, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27289166

RESUMEN

The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is associated with protection from the development of autoimmune diseases, particularly multiple sclerosis, the precise mechanism by which UV achieves this protection is not currently well understood. Regulatory B cells play an important role in preventing autoimmunity and activation of B cells is a major way in which UV suppresses adaptive immune responses. Whether UV-protection from autoimmunity is mediated by the activation of regulatory B cells has never been considered before. When C57BL/6 mice were exposed to low, physiologically relevant doses of UV, a unique population of B cells was activated in the skin draining lymph nodes. As determined by flow cytometry, CD1d(low)CD5(-)MHC-II(hi)B220(hi) UV-activated B cells expressed significantly higher levels of CD19, CD21/35, CD25, CD210 and CD268 as well as the co-stimulatory molecules CD80, CD86, CD274 and CD275. Experimental autoimmune encephalomyelitis (EAE) in mice immunized with MOG/CFA was reduced by exposure to UV. UV significantly inhibited demyelination and infiltration of inflammatory cells into the spinal cord. Consequently, UV-exposed groups showed elevated IL-10 levels in secondary lymphoid organs, delayed EAE onset, reduced peak EAE score and significantly suppressed overall disease incidence and burden. Importantly, protection from EAE could be adoptively transferred using B cells isolated from UV-exposed, but not unirradiated hosts. Indeed, UV-protection from EAE was dependent on UV activation of lymph node B cells because UV could not protect mice from EAE who were pharmacologically depleted of B cells using antibodies. Thus, UV maintenance of a pool of unique regulatory B cells in peripheral lymph nodes appears to be essential to prevent an autoimmune attack on the central nervous system.


Asunto(s)
Autoinmunidad/efectos de la radiación , Linfocitos B Reguladores/efectos de la radiación , Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/prevención & control , Activación de Linfocitos/efectos de la radiación , Luz Solar , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/inmunología , Antígenos CD/metabolismo , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Sistema Nervioso Central/patología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Antígenos de Histocompatibilidad Clase II/metabolismo , Inyecciones Intraperitoneales , Interleucina-10/metabolismo , Interleucina-10/efectos de la radiación , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidad
16.
Eur J Immunol ; 45(3): 780-93, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25430701

RESUMEN

Tuberculosis remains a global health problem, in part due to failure of the currently available vaccine, BCG, to protect adults against pulmonary forms of the disease. We explored the impact of pulmonary delivery of recombinant influenza A viruses (rIAVs) on the induction of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4(+) and CD8(+) T-cell responses and the resultant protection against M. tuberculosis infection in C57BL/6 mice. Intranasal infection with rIAVs expressing a CD4(+) T-cell epitope from the Ag85B protein (PR8.p25) or CD8(+) T-cell epitope from the TB10.4 protein (PR8.TB10.4) generated strong T-cell responses to the M. tuberculosis-specific epitopes in the lung that persisted long after the rIAVs were cleared. Infection with PR8.p25 conferred protection against subsequent M. tuberculosis challenge in the lung, and this was associated with increased levels of poly-functional CD4(+) T cells at the time of challenge. By contrast, infection with PR8.TB10.4 did not induce protection despite the presence of IFN-γ-producing M. tuberculosis-specific CD8(+) T cells in the lung at the time of challenge and during infection. Therefore, the induction of pulmonary M. tuberculosis epitope-specific CD4(+), but not CD8(+) T cells, is essential for protection against acute M. tuberculosis infection in the lung.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Epítopos/inmunología , Virus de la Influenza A , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Animales , Linfocitos T CD8-positivos/inmunología , Epítopos/genética , Femenino , Ratones , Mycobacterium tuberculosis/genética , Vacunas contra la Tuberculosis/genética , Tuberculosis Pulmonar/inmunología
17.
Front Immunol ; 5: 254, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24910634

RESUMEN

The biological activities of human IgG antibodies predominantly rely on a family of receptors for the Fc portion of IgG, FcγRs: FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA, FcγRIIIB, FcRL5, FcRn, and TRIM21. All FcγRs bind IgG at the cell surface, except FcRn and TRIM21 that bind IgG once internalized. The affinity of FcγRs for IgG is determined by polymorphisms of human FcγRs and ranges from 2 × 10(4) to 8 × 10(7) M(-1). The biological functions of FcγRs extend from cellular activation or inhibition, IgG-internalization/endocytosis/phagocytosis to IgG transport and recycling. This review focuses on human FcγRs and intends to present an overview of the current understanding of how these receptors may contribute to various pathologies. It will define FcγRs and their polymorphic variants, their affinity for human IgG subclasses, and review the associations found between FcγR polymorphisms and human pathologies. It will also describe the human FcγR-transgenic mice that have been used to study the role of these receptors in autoimmune, inflammatory, and allergic disease models.

18.
J Immunol ; 191(1): 302-11, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23698750

RESUMEN

Individuals infected with mycobacteria are likely to experience episodes of concurrent infections with unrelated respiratory pathogens, including the seasonal or pandemic circulating influenza A virus strains. We analyzed the impact of influenza A virus and mycobacterial respiratory coinfection on the development of CD8 T cell responses to each pathogen. Coinfected mice exhibited reduced frequency and numbers of CD8 T cells specific to Mycobacterium bovis bacille Calmette-Guérin (BCG) in the lungs, and the IFN-γ CD8 T cell response to BCG-encoded OVA was decreased in the lungs of coinfected mice, when compared with mice infected with BCG alone. Moreover, after 2 wk of infection, mice coinfected with both pathogens showed a significant increase in the number of mycobacteria present in the lung compared with mice infected with BCG only. Following adoptive transfer into coinfected mice, transgenic CD8 T cells specific for OVA(257-264) failed to proliferate as extensively in the mediastinal lymph nodes as in mice infected only with BCG-OVA. Also noted was a reduction in the proliferation of BCG-specific CD4 transgenic T cells in mice coinfected with influenza compared with mice infected with BCG alone. Furthermore, phenotypic analysis of CD11c(+) dendritic cells from mediastinal lymph nodes of the infected mice showed that coinfection was associated with decreased surface expression of MHC class II and class I. Thus, concurrent pulmonary infection with influenza A virus is associated with decreased MHC expression on dendritic cells, reduced activation of BCG-specific CD4 and CD8 T cells, and impaired clearance of mycobacteria.


Asunto(s)
Virus de la Influenza A/inmunología , Mycobacterium bovis/inmunología , Infecciones por Orthomyxoviridae/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/microbiología , Tuberculosis Pulmonar/inmunología , Animales , Células Cultivadas , Técnicas de Cocultivo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/microbiología , Ovalbúmina/inmunología , Subgrupos de Linfocitos T/patología , Tuberculosis Pulmonar/complicaciones , Tuberculosis Pulmonar/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA