Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Nat Chem Biol ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38744986

G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

3.
Nature ; 625(7995): 572-577, 2024 Jan.
Article En | MEDLINE | ID: mdl-38172635

Gram-negative bacteria are extraordinarily difficult to kill because their cytoplasmic membrane is surrounded by an outer membrane that blocks the entry of most antibiotics. The impenetrable nature of the outer membrane is due to the presence of a large, amphipathic glycolipid called lipopolysaccharide (LPS) in its outer leaflet1. Assembly of the outer membrane requires transport of LPS across a protein bridge that spans from the cytoplasmic membrane to the cell surface. Maintaining outer membrane integrity is essential for bacterial cell viability, and its disruption can increase susceptibility to other antibiotics2-6. Thus, inhibitors of the seven lipopolysaccharide transport (Lpt) proteins that form this transenvelope transporter have long been sought. A new class of antibiotics that targets the LPS transport machine in Acinetobacter was recently identified. Here, using structural, biochemical and genetic approaches, we show that these antibiotics trap a substrate-bound conformation of the LPS transporter that stalls this machine. The inhibitors accomplish this by recognizing a composite binding site made up of both the Lpt transporter and its LPS substrate. Collectively, our findings identify an unusual mechanism of lipid transport inhibition, reveal a druggable conformation of the Lpt transporter and provide the foundation for extending this class of antibiotics to other Gram-negative pathogens.


Anti-Bacterial Agents , Bacterial Outer Membrane Proteins , Lipopolysaccharides , Membrane Transport Proteins , Acinetobacter/chemistry , Acinetobacter/drug effects , Acinetobacter/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Outer Membrane Proteins/antagonists & inhibitors , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Binding Sites/drug effects , Biological Transport/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/genetics , Cell Membrane/metabolism , Lipopolysaccharides/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Microbial Viability , Protein Conformation/drug effects , Substrate Specificity
4.
bioRxiv ; 2023 Aug 24.
Article En | MEDLINE | ID: mdl-37662341

G protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue, and cellular level. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays, and structural studies, we develop maternally selective heavy chain-only antibody ("nanobody") antagonists against the angiotensin II type I receptor (AT1R) and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to AT1R with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.

5.
Nat Commun ; 14(1): 3439, 2023 06 10.
Article En | MEDLINE | ID: mdl-37301887

The peptidoglycan (PG) cell wall protects bacteria against osmotic lysis and determines cell shape, making this structure a key antibiotic target. Peptidoglycan is a polymer of glycan chains connected by peptide crosslinks, and its synthesis requires precise spatiotemporal coordination between glycan polymerization and crosslinking. However, the molecular mechanism by which these reactions are initiated and coupled is unclear. Here we use single-molecule FRET and cryo-EM to show that an essential PG synthase (RodA-PBP2) responsible for bacterial elongation undergoes dynamic exchange between closed and open states. Structural opening couples the activation of polymerization and crosslinking and is essential in vivo. Given the high conservation of this family of synthases, the opening motion that we uncovered likely represents a conserved regulatory mechanism that controls the activation of PG synthesis during other cellular processes, including cell division.


Bacterial Proteins , Peptidoglycan , Bacterial Proteins/chemistry , Penicillin-Binding Proteins/metabolism , Allosteric Regulation , Polysaccharides/analysis , Cell Wall/metabolism
6.
Curr Res Struct Biol ; 3: 72-84, 2021.
Article En | MEDLINE | ID: mdl-34235487

Epoxide hydrolases catalyze the conversion of epoxides to vicinal diols in a range of cellular processes such as signaling, detoxification, and virulence. These enzymes typically utilize a pair of tyrosine residues to orient the substrate epoxide ring in the active site and stabilize the hydrolysis intermediate. A new subclass of epoxide hydrolases that utilize a histidine in place of one of the tyrosines was established with the discovery of the CFTR Inhibitory Factor (Cif) from Pseudomonas aeruginosa. Although the presence of such Cif-like epoxide hydrolases was predicted in other opportunistic pathogens based on sequence analyses, only Cif and its homolog aCif from Acinetobacter nosocomialis have been characterized. Here we report the biochemical and structural characteristics of Cfl1 and Cfl2, two Cif-like epoxide hydrolases from Burkholderia cenocepacia. Cfl1 is able to hydrolyze xenobiotic as well as biological epoxides that might be encountered in the environment or during infection. In contrast, Cfl2 shows very low activity against a diverse set of epoxides. The crystal structures of the two proteins reveal quaternary structures that build on the well-known dimeric assembly of the α/ß hydrolase domain, but broaden our understanding of the structural diversity encoded in novel oligomer interfaces. Analysis of the interfaces reveals both similarities and key differences in sequence conservation between the two assemblies, and between the canonical dimer and the novel oligomer interfaces of each assembly. Finally, we discuss the effects of these higher-order assemblies on the intra-monomer flexibility of Cfl1 and Cfl2 and their possible roles in regulating enzymatic activity.

7.
Nat Chem Biol ; 17(10): 1057-1064, 2021 10.
Article En | MEDLINE | ID: mdl-34168368

The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, not always accessible and poorly compatible with many antigens. Here, we describe 'autonomous hypermutation yeast surface display' (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. By encoding antibody fragments on an error-prone orthogonal DNA replication system, surface-displayed antibody repertoires continuously mutate through simple cycles of yeast culturing and enrichment for antigen binding to produce high-affinity clones in as little as two weeks. We applied AHEAD to generate potent nanobodies against the SARS-CoV-2 S glycoprotein, a G-protein-coupled receptor and other targets, offering a template for streamlined antibody generation at large.


Antibody Formation/immunology , Protein Engineering/methods , Recombinant Proteins/biosynthesis , Antibodies/immunology , Antigens , COVID-19/immunology , Humans , Peptide Library , Recombinant Proteins/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Saccharomyces cerevisiae/metabolism , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/immunology
8.
Immunity ; 54(4): 769-780.e6, 2021 04 13.
Article En | MEDLINE | ID: mdl-33823129

An effective vaccine for respiratory syncytial virus (RSV) is an unrealized public health goal. A single dose of the prefusion-stabilized fusion (F) glycoprotein subunit vaccine (DS-Cav1) substantially increases serum-neutralizing activity in healthy adults. We sought to determine whether DS-Cav1 vaccination induces a repertoire mirroring the pre-existing diversity from natural infection or whether antibody lineages targeting specific epitopes predominate. We evaluated RSV F-specific B cell responses before and after vaccination in six participants using complementary B cell sequencing methodologies and identified 555 clonal lineages. DS-Cav1-induced lineages recognized the prefusion conformation of F (pre-F) and were genetically diverse. Expressed antibodies recognized all six antigenic sites on the pre-F trimer. We identified 34 public clonotypes, and structural analysis of two antibodies from a predominant clonotype revealed a common mode of recognition. Thus, vaccination with DS-Cav1 generates a diverse polyclonal response targeting the antigenic sites on pre-F, supporting the development and advanced testing of pre-F-based vaccines against RSV.


Antibodies, Viral/immunology , Antibody Formation/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/immunology , Cell Line , Cell Line, Tumor , Child , Child, Preschool , Cohort Studies , Epitopes/immunology , Female , HEK293 Cells , Humans , Infant , Infant, Newborn , Male , Middle Aged , Vaccination/methods , Viral Fusion Proteins/immunology , Young Adult
9.
J Med Chem ; 64(7): 3658-3676, 2021 04 08.
Article En | MEDLINE | ID: mdl-33729773

RV521 is an orally bioavailable inhibitor of respiratory syncytial virus (RSV) fusion that was identified after a lead optimization process based upon hits that originated from a physical property directed hit profiling exercise at Reviral. This exercise encompassed collaborations with a number of contract organizations with collaborative medicinal chemistry and virology during the optimization phase in addition to those utilized as the compound proceeded through preclinical and clinical evaluation. RV521 exhibited a mean IC50 of 1.2 nM against a panel of RSV A and B laboratory strains and clinical isolates with antiviral efficacy in the Balb/C mouse model of RSV infection. Oral bioavailability in preclinical species ranged from 42 to >100% with evidence of highly efficient penetration into lung tissue. In healthy adult human volunteers experimentally infected with RSV, a potent antiviral effect was observed with a significant reduction in viral load and symptoms compared to placebo.


Antiviral Agents/pharmacology , Benzimidazoles/pharmacology , Respiratory Syncytial Virus, Human/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacokinetics , Biological Availability , Cell Line, Tumor , Clinical Trials as Topic , Drug Discovery , Humans , Microbial Sensitivity Tests , Protein Binding , Viral Fusion Proteins/metabolism
10.
bioRxiv ; 2020 Nov 11.
Article En | MEDLINE | ID: mdl-33200136

The predominant approach for antibody generation remains animal immunization, which can yield exceptionally selective and potent antibody clones owing to the powerful evolutionary process of somatic hypermutation. However, animal immunization is inherently slow, has poor compatibility with certain antigens ( e . g ., integral membrane proteins), and suffers from self-tolerance and immunodominance, which limit the functional spectrum of antibodies that can be obtained. Here, we describe A utonomous H ypermutation y E ast surf A ce D isplay (AHEAD), a synthetic recombinant antibody generation technology that imitates somatic hypermutation inside engineered yeast. In AHEAD, antibody fragments are encoded on an error-prone orthogonal DNA replication system, resulting in Saccharomyces cerevisiae populations that continuously mutate surface-displayed antibody repertoires. Simple cycles of yeast culturing and enrichment for antigen binding drive the evolution of high-affinity antibody clones in a readily parallelizable process that takes as little as 2 weeks. We applied AHEAD to generate nanobodies against the SARS-CoV-2 S glycoprotein, a GPCR, and other targets. The SARS-CoV-2 nanobodies, concurrently evolved from an open-source naïve nanobody library in 8 independent experiments, reached subnanomolar affinities through the sequential fixation of multiple mutations over 3-8 AHEAD cycles that saw ∼580-fold and ∼925-fold improvements in binding affinities and pseudovirus neutralization potencies, respectively. These experiments highlight the defining speed, parallelizability, and effectiveness of AHEAD and provide a template for streamlined antibody generation at large with salient utility in rapid response to current and future viral outbreaks.

11.
Cell Rep ; 30(13): 4540-4550.e3, 2020 03 31.
Article En | MEDLINE | ID: mdl-32234486

Ebola virus causes severe hemorrhagic fever, often leading to death in humans. The trimeric fusion glycoprotein (GP) is the sole target for neutralizing antibodies and is the major focus of vaccine development. Soluble GP ectodomains are unstable and mostly monomeric when not fused to a heterologous trimerization domain. Here, we report structure-based designs of Ebola and Marburg GP trimers based on a stabilizing mutation in the hinge loop in refolding region 1 and substitution of a partially buried charge at the interface of the GP1 and GP2 subunits. The combined substitutions (T577P and K588F) substantially increased trimer expression for Ebola GP proteins. We determined the crystal structure of stabilized GP from the Makona Zaire ebolavirus strain without a trimerization domain or complexed ligand. The structure reveals that the stabilized GP adopts the same trimeric prefusion conformation, provides insight into triggering of GP conformational changes, and should inform future filovirus vaccine development.


Filoviridae/metabolism , Glycoproteins/chemistry , Protein Multimerization , Amino Acid Substitution , Cell Line , Crystallography, X-Ray , Ebolavirus/metabolism , Glycoproteins/genetics , Humans , Marburgvirus/metabolism , Models, Molecular , Mutation/genetics , Perfusion , Protein Domains , Protein Stability , Structure-Activity Relationship
12.
Nat Microbiol ; 5(6): 813-820, 2020 06.
Article En | MEDLINE | ID: mdl-32152588

The shape, elongation, division and sporulation (SEDS) proteins are a highly conserved family of transmembrane glycosyltransferases that work in concert with class B penicillin-binding proteins (bPBPs) to build the bacterial peptidoglycan cell wall1-6. How these proteins coordinate polymerization of new glycan strands with their crosslinking to the existing peptidoglycan meshwork is unclear. Here, we report the crystal structure of the prototypical SEDS protein RodA from Thermus thermophilus in complex with its cognate bPBP at 3.3 Å resolution. The structure reveals a 1:1 stoichiometric complex with two extensive interaction interfaces between the proteins: one in the membrane plane and the other at the extracytoplasmic surface. When in complex with a bPBP, RodA shows an approximately 10 Å shift of transmembrane helix 7 that exposes a large membrane-accessible cavity. Negative-stain electron microscopy reveals that the complex can adopt a variety of different conformations. These data define the bPBP pedestal domain as the key allosteric activator of RodA both in vitro and in vivo, explaining how a SEDS-bPBP complex can coordinate its dual enzymatic activities of peptidoglycan polymerization and crosslinking to build the cell wall.


Models, Molecular , Multiprotein Complexes/chemistry , Penicillin-Binding Proteins/chemistry , Peptidoglycan Glycosyltransferase/chemistry , Protein Multimerization , Binding Sites , Cell Wall/metabolism , Molecular Structure , Multiprotein Complexes/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan/metabolism , Peptidoglycan Glycosyltransferase/metabolism , Protein Binding , Protein Conformation , Structure-Activity Relationship
13.
Cell ; 179(1): 193-204.e14, 2019 Sep 19.
Article En | MEDLINE | ID: mdl-31495574

Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.


Phosphoproteins/ultrastructure , RNA-Dependent RNA Polymerase/ultrastructure , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/enzymology , Viral Proteins/ultrastructure , Acetates/chemistry , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Catalytic Domain , Cryoelectron Microscopy , Deoxycytidine/analogs & derivatives , Deoxycytidine/chemistry , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Quinolines/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Vaccines/chemistry , Sf9 Cells , Spodoptera , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication/drug effects
14.
Nat Commun ; 10(1): 2105, 2019 05 08.
Article En | MEDLINE | ID: mdl-31068578

The respiratory syncytial virus (RSV) F glycoprotein is a class I fusion protein that mediates viral entry and is a major target of neutralizing antibodies. Structures of prefusion forms of RSV F, as well as other class I fusion proteins, have revealed compact trimeric arrangements, yet whether these trimeric forms can transiently open remains unknown. Here, we perform structural and biochemical studies on a recently isolated antibody, CR9501, and demonstrate that it enhances the opening of prefusion-stabilized RSV F trimers. The 3.3 Å crystal structure of monomeric RSV F bound to CR9501, combined with analysis of over 25 previously determined RSV F structures, reveals a breathing motion of the prefusion conformation. We also demonstrate that full-length RSV F trimers transiently open and dissociate on the cell surface. Collectively, these findings have implications for the function of class I fusion proteins, as well as antibody prophylaxis and vaccine development for RSV.


Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Respiratory Syncytial Virus, Human/physiology , Viral Fusion Proteins/metabolism , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , B-Lymphocytes/virology , Chlorocebus aethiops , Computer Simulation , Crystallography, X-Ray , Drug Development , HEK293 Cells , HeLa Cells , Humans , Models, Molecular , Protein Multimerization/physiology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/isolation & purification , Vero Cells , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology
15.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 2): 123-131, 2019 Feb 01.
Article En | MEDLINE | ID: mdl-30713164

Advances in X-ray crystallography have streamlined the process of determining high-resolution three-dimensional macromolecular structures. However, a rate-limiting step in this process continues to be the generation of crystals that are of sufficient size and quality for subsequent diffraction experiments. Here, iterative screen optimization (ISO), a highly automated process in which the precipitant concentrations of each condition in a crystallization screen are modified based on the results of a prior crystallization experiment, is described. After designing a novel high-throughput crystallization screen to take full advantage of this method, the value of ISO is demonstrated by using it to successfully crystallize a panel of six diverse proteins. The results suggest that ISO is an effective method to obtain macromolecular crystals, particularly for proteins that crystallize under a narrow range of precipitant concentrations.


Crystallization/methods , Crystallization/standards , High-Throughput Screening Assays/standards , Proteins/chemistry , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation
16.
Annu Rev Med ; 70: 91-104, 2019 01 27.
Article En | MEDLINE | ID: mdl-30691364

Enabled by new approaches for rapid identification and selection of human monoclonal antibodies, atomic-level structural information for viral surface proteins, and capacity for precision engineering of protein immunogens and self-assembling nanoparticles, a new era of antigen design and display options has evolved. While HIV-1 vaccine development has been a driving force behind these technologies and concepts, clinical proof-of-concept for structure-based vaccine design may first be achieved for respiratory syncytial virus (RSV), where conformation-dependent access to neutralization-sensitive epitopes on the fusion glycoprotein determines the capacity to induce potent neutralizing activity. Success with RSV has motivated structure-based stabilization of other class I viral fusion proteins for use as immunogens and demonstrated the importance of structural information for developing vaccines against other viral pathogens, particularly difficult targets that have resisted prior vaccine development efforts. Solving viral surface protein structures also supports rapid vaccine antigen design and application of platform manufacturing approaches for emerging pathogens.


Antibodies, Monoclonal/administration & dosage , Respiratory Syncytial Viruses/immunology , Vaccines, Synthetic/pharmacology , Viral Fusion Proteins/immunology , Viral Vaccines/pharmacology , Animals , Antibodies, Neutralizing/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Humans , Sensitivity and Specificity , Structure-Activity Relationship , Vaccines, Synthetic/administration & dosage
17.
PLoS Pathog ; 14(3): e1006935, 2018 03.
Article En | MEDLINE | ID: mdl-29509814

Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections in infants and the elderly, and yet there remains no effective treatment or vaccine. The surface of the virion is decorated with the fusion glycoprotein (RSV F) and the attachment glycoprotein (RSV G), which binds to CX3CR1 on human airway epithelial cells to mediate viral attachment and subsequent infection. RSV G is a major target of the humoral immune response, and antibodies that target the central conserved region of G have been shown to neutralize both subtypes of RSV and to protect against severe RSV disease in animal models. However, the molecular underpinnings for antibody recognition of this region have remained unknown. Therefore, we isolated two human antibodies directed against the central conserved region of RSV G and demonstrated that they neutralize RSV infection of human bronchial epithelial cell cultures in the absence of complement. Moreover, the antibodies protected cotton rats from severe RSV disease. Both antibodies bound with high affinity to a secreted form of RSV G as well as to a peptide corresponding to the unglycosylated central conserved region. High-resolution crystal structures of each antibody in complex with the G peptide revealed two distinct conformational epitopes that require proper folding of the cystine noose located in the C-terminal part of the central conserved region. Comparison of these structures with the structure of fractalkine (CX3CL1) alone or in complex with a viral homolog of CX3CR1 (US28) suggests that RSV G would bind to CX3CR1 in a mode that is distinct from that of fractalkine. Collectively, these results build on recent studies demonstrating the importance of RSV G in antibody-mediated protection from severe RSV disease, and the structural information presented here should guide the development of new vaccines and antibody-based therapies for RSV.


Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/chemistry , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Bronchi/drug effects , Bronchi/immunology , Bronchi/metabolism , Cells, Cultured , Chemokine CX3CL1/metabolism , Crystallography, X-Ray , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epitopes/chemistry , Epitopes/immunology , Humans , Male , Protein Conformation , Rats , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/pharmacology , Respiratory System/drug effects , Respiratory System/immunology , Respiratory System/metabolism , Sigmodontinae , Viral Fusion Proteins/immunology , Viral Fusion Proteins/metabolism
18.
Immunity ; 48(2): 339-349.e5, 2018 02 20.
Article En | MEDLINE | ID: mdl-29396163

Respiratory syncytial virus (RSV) is a leading cause of infant mortality, and there are currently no licensed vaccines to protect this vulnerable population. A comprehensive understanding of infant antibody responses to natural RSV infection would facilitate vaccine development. Here, we isolated more than 450 RSV fusion glycoprotein (F)-specific antibodies from 7 RSV-infected infants and found that half of the antibodies recognized only two antigenic sites. Antibodies targeting both sites showed convergent sequence features, and structural studies revealed the molecular basis for their recognition of RSV F. A subset of antibodies targeting one of these sites displayed potent neutralizing activity despite lacking somatic mutations, and similar antibodies were detected in RSV-naive B cell repertoires, suggesting that expansion of these B cells in infants may be possible with suitably designed vaccine antigens. Collectively, our results provide fundamental insights into infant antibody responses and a framework for the rational design of age-specific RSV vaccines.


Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Respiratory Syncytial Virus Infections/immunology , Somatic Hypermutation, Immunoglobulin , Viral Fusion Proteins/immunology , Animals , B-Lymphocytes/immunology , Humans , Infant , Mice , Respiratory Syncytial Virus Vaccines/immunology
20.
Nat Commun ; 8: 14158, 2017 02 13.
Article En | MEDLINE | ID: mdl-28194013

Human respiratory syncytial virus (RSV) is the main cause of lower respiratory tract infections in young children. The RSV fusion protein (F) is highly conserved and is the only viral membrane protein that is essential for infection. The prefusion conformation of RSV F is considered the most relevant target for antiviral strategies because it is the fusion-competent form of the protein and the primary target of neutralizing activity present in human serum. Here, we describe two llama-derived single-domain antibodies (VHHs) that have potent RSV-neutralizing activity and bind selectively to prefusion RSV F with picomolar affinity. Crystal structures of these VHHs in complex with prefusion F show that they recognize a conserved cavity formed by two F protomers. In addition, the VHHs prevent RSV replication and lung infiltration of inflammatory monocytes and T cells in RSV-challenged mice. These prefusion F-specific VHHs represent promising antiviral agents against RSV.


Antibodies, Neutralizing/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Single-Domain Antibodies/immunology , Viral Fusion Proteins/immunology , Animals , Camelids, New World/immunology , Chlorocebus aethiops , Humans , Mice , Monocytes/immunology , Monocytes/virology , Protein Binding , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/physiology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Vero Cells , Virus Replication/immunology
...