Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuropathol Exp Neurol ; 81(11): 873-884, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35984315

RESUMEN

Rosette-forming glioneuronal tumors (RGNT) are rare low-grade primary central nervous system (CNS) tumors. The methylation class (MC) RGNT (MC-RGNT) delineates RGNT from other neurocytic CNS tumors with similar histological features. We performed a comprehensive molecular analysis including whole-exome sequencing, RNAseq, and methylome on 9 tumors with similar histology, focusing on the immune microenvironment and cell of origin of RGNT. Three RGNT in this cohort were plotted within the MC-RGNT and characterized by FGFR1 mutation plus PIK3CA or NF1 mutations. RNAseq analysis, validated by immunohistochemistry, identified 2 transcriptomic groups with distinct immune microenvironments. The "cold" group was distinguishable by a low immune infiltration and included the 3 MC-RGNT and 1 MC-pilocytic astrocytoma; the "hot" group included other tumors with a rich immune infiltration. Gene set enrichment analysis showed that the "cold" group had upregulated NOTCH pathway and mainly oligodendrocyte precursor cell and neuronal phenotypes, while the "hot" group exhibited predominantly astrocytic and neural stem cell phenotypes. In silico deconvolution identified the cerebellar granule cell lineage as a putative cell of origin of RGNT. Our study identified distinct tumor biology and immune microenvironments as key features relevant to the pathogenesis and management of RGNT.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias del Ventrículo Cerebral , Neoplasias Neuroepiteliales , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Neuroepiteliales/patología , Neoplasias del Sistema Nervioso Central/genética , Fosfatidilinositol 3-Quinasa Clase I , Neoplasias del Ventrículo Cerebral/patología , Microambiente Tumoral
2.
Front Genet ; 10: 1207, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850067

RESUMEN

Changes in gene activity through epigenetic alterations induced by early environmental challenges during embryogenesis are known to impact the phenotype, health, and disease risk of animals. Learning how environmental cues translate into persisting epigenetic memory may open new doors to improve robustness and resilience of developing animals. It has previously been shown that the heat tolerance of male broiler chickens was improved by cyclically elevating egg incubation temperature. The embryonic thermal manipulation enhanced gene expression response in muscle (P. major) when animals were heat challenged at slaughter age, 35 days post-hatch. However, the molecular mechanisms underlying this phenomenon remain unknown. Here, we investigated the genome-wide distribution, in hypothalamus and muscle tissues, of two histone post-translational modifications, H3K4me3 and H3K27me3, known to contribute to environmental memory in eukaryotes. We found 785 H3K4me3 and 148 H3K27me3 differential peaks in the hypothalamus, encompassing genes involved in neurodevelopmental, metabolic, and gene regulation functions. Interestingly, few differences were identified in the muscle tissue for which differential gene expression was previously described. These results demonstrate that the response to embryonic thermal manipulation (TM) in chicken is mediated, at least in part, by epigenetic changes in the hypothalamus that may contribute to the later-life thermal acclimation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA