Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(4): 550-564, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894671

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.


Asunto(s)
COVID-19 , Animales , Ratones , SARS-CoV-2 , Senescencia Celular , Daño del ADN
3.
Nat Mater ; 22(5): 644-655, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36581770

RESUMEN

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Asunto(s)
Actinas , Neoplasias , ADN , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Citosol/metabolismo , Transducción de Señal
4.
Cell Rep ; 36(11): 109694, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525372

RESUMEN

Chromatin organization plays a crucial role in tissue homeostasis. Heterochromatin relaxation and consequent unscheduled mobilization of transposable elements (TEs) are emerging as key contributors of aging and aging-related pathologies, including Alzheimer's disease (AD) and cancer. However, the mechanisms governing heterochromatin maintenance or its relaxation in pathological conditions remain poorly understood. Here we show that PIN1, the only phosphorylation-specific cis/trans prolyl isomerase, whose loss is associated with premature aging and AD, is essential to preserve heterochromatin. We demonstrate that this PIN1 function is conserved from Drosophila to humans and prevents TE mobilization-dependent neurodegeneration and cognitive defects. Mechanistically, PIN1 maintains nuclear type-B Lamin structure and anchoring function for heterochromatin protein 1α (HP1α). This mechanism prevents nuclear envelope alterations and heterochromatin relaxation under mechanical stress, which is a key contributor to aging-related pathologies.


Asunto(s)
Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Lamina Tipo B/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Estrés Mecánico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Células Cultivadas , Homólogo de la Proteína Chromobox 5/genética , Homólogo de la Proteína Chromobox 5/metabolismo , Elementos Transponibles de ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Humanos , Lamina Tipo B/química , Ratones , Ratones Endogámicos C57BL , Peptidilprolil Isomerasa de Interacción con NIMA/antagonistas & inhibidores , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Neocórtex/citología , Neocórtex/metabolismo , Neuronas/citología , Neuronas/metabolismo , Membrana Nuclear/química , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Isomerasa de Peptidilprolil/genética , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
5.
Trends Genet ; 37(4): 337-354, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33020022

RESUMEN

Subcellular compartmentalization contributes to the organization of a plethora of molecular events occurring within cells. This can be achieved in membraneless organelles generated through liquid-liquid phase separation (LLPS), a demixing process that separates and concentrates cellular reactions. RNA is often a critical factor in mediating LLPS. Recent evidence indicates that DNA damage response foci are membraneless structures formed via LLPS and modulated by noncoding transcripts synthesized at DNA damage sites. Neurodegeneration is often associated with DNA damage, and dysfunctional LLPS events can lead to the formation of toxic aggregates. In this review, we discuss those gene products involved in neurodegeneration that undergo LLPS and their involvement in the DNA damage response.


Asunto(s)
Daño del ADN/genética , Degeneración Nerviosa/genética , Orgánulos/genética , Transcripción Genética , Humanos , Extracción Líquido-Líquido , Degeneración Nerviosa/patología , Orgánulos/química , Transición de Fase
6.
Nat Cell Biol ; 21(10): 1286-1299, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31570834

RESUMEN

Damage-induced long non-coding RNAs (dilncRNA) synthesized at DNA double-strand breaks (DSBs) by RNA polymerase II are necessary for DNA-damage-response (DDR) focus formation. We demonstrate that induction of DSBs results in the assembly of functional promoters that include a complete RNA polymerase II preinitiation complex, MED1 and CDK9. Absence or inactivation of these factors causes a reduction in DDR foci both in vivo and in an in vitro system that reconstitutes DDR events on nucleosomes. We also show that dilncRNAs drive molecular crowding of DDR proteins, such as 53BP1, into foci that exhibit liquid-liquid phase-separation condensate properties. We propose that the assembly of DSB-induced transcriptional promoters drives RNA synthesis, which stimulates phase separation of DDR factors in the shape of foci.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/genética , Reparación del ADN , ADN/genética , Subunidad 1 del Complejo Mediador/metabolismo , Transcripción Genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Subunidad 1 del Complejo Mediador/genética , Osteoblastos/citología , Osteoblastos/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
7.
Sci Rep ; 9(1): 6460, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015566

RESUMEN

A novel class of small non-coding RNAs called DNA damage response RNAs (DDRNAs) generated at DNA double-strand breaks (DSBs) in a DROSHA- and DICER-dependent manner has been shown to regulate the DNA damage response (DDR). Similar molecules were also reported to guide DNA repair. Here, we show that DDR activation and DNA repair can be pharmacologically boosted by acting on such non-coding RNAs. Cells treated with enoxacin, a compound previously demonstrated to augment DICER activity, show stronger DDR signalling and faster DNA repair upon exposure to ionizing radiations compared to vehicle-only treated cells. Enoxacin stimulates DDRNA production at chromosomal DSBs and at dysfunctional telomeres, which in turn promotes 53BP1 accumulation at damaged sites, therefore in a miRNA-independent manner. Increased 53BP1 occupancy at DNA lesions induced by enoxacin ultimately suppresses homologous recombination, channelling DNA repair towards faster and more accurate non-homologous end-joining, including in post-mitotic primary neurons. Notably, augmented DNA repair stimulated by enoxacin increases the survival also of cancer cells treated with chemotherapeutic agents.


Asunto(s)
Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Enoxacino/farmacología , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos , Células HeLa , Humanos , MicroARNs/genética , Telómero/genética , Telómero/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
8.
Chem Rev ; 118(8): 4365-4403, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29600857

RESUMEN

Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.


Asunto(s)
Inestabilidad Genómica , ARN no Traducido/genética , Roturas del ADN de Doble Cadena , Daño del ADN , Regulación de la Expresión Génica , Humanos , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
9.
Nat Cell Biol ; 19(12): 1400-1411, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29180822

RESUMEN

The DNA damage response (DDR) preserves genomic integrity. Small non-coding RNAs termed DDRNAs are generated at DNA double-strand breaks (DSBs) and are critical for DDR activation. Here we show that active DDRNAs specifically localize to their damaged homologous genomic sites in a transcription-dependent manner. Following DNA damage, RNA polymerase II (RNAPII) binds to the MRE11-RAD50-NBS1 complex, is recruited to DSBs and synthesizes damage-induced long non-coding RNAs (dilncRNAs) from and towards DNA ends. DilncRNAs act both as DDRNA precursors and by recruiting DDRNAs through RNA-RNA pairing. Together, dilncRNAs and DDRNAs fuel DDR focus formation and associate with 53BP1. Accordingly, inhibition of RNAPII prevents DDRNA recruitment, DDR activation and DNA repair. Antisense oligonucleotides matching dilncRNAs and DDRNAs impair site-specific DDR focus formation and DNA repair. We propose that DDR signalling sites, in addition to sharing a common pool of proteins, individually host a unique set of site-specific RNAs necessary for DDR activation.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , ARN Largo no Codificante/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Ácido Anhídrido Hidrolasas , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Sistema Libre de Células , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Reparación del ADN/fisiología , Proteínas de Unión al ADN , Proteína Homóloga de MRE11/metabolismo , Ratones , Modelos Biológicos , Proteínas Nucleares/metabolismo , Oligonucleótidos Antisentido/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , Transcripción Genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
10.
Sci Rep ; 7: 41559, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139767

RESUMEN

Endoribonucleases participate in almost every step of eukaryotic RNA metabolism, acting either as degradative or biosynthetic enzymes. We previously identified the founding member of the Eukaryotic EndoU ribonuclease family, whose components display unique biochemical features and are flexibly involved in important biological processes, such as ribosome biogenesis, tumorigenesis and viral replication. Here we report the discovery of the CG3303 gene product, which we named DendoU, as a novel family member in Drosophila. Functional characterisation revealed that DendoU is essential for Drosophila viability and nervous system activity. Pan-neuronal silencing of dendoU resulted in fly immature phenotypes, highly reduced lifespan and dramatic motor performance defects. Neuron-subtype selective silencing showed that DendoU is particularly important in cholinergic circuits. At the molecular level, we unveiled that DendoU is a positive regulator of the neurodegeneration-associated protein dTDP-43, whose downregulation recapitulates the ensemble of dendoU-dependent phenotypes. This interdisciplinary work, which comprehends in silico, in vitro and in vivo studies, unveils a relevant role for DendoU in Drosophila nervous system physio-pathology and highlights that DendoU-mediated neurotoxicity is, at least in part, contributed by dTDP-43 loss-of-function.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Endorribonucleasas/genética , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/genética , Endorribonucleasas/metabolismo , Perfilación de la Expresión Génica , Silenciador del Gen , Mutación con Pérdida de Función , Actividad Motora , Neuronas/metabolismo , Fenotipo , Análisis de Secuencia de ADN
11.
RNA Biol ; 12(12): 1323-37, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26480000

RESUMEN

The human genome contains some thousands of long non coding RNAs (lncRNAs). Many of these transcripts are presently considered crucial regulators of gene expression and functionally implicated in developmental processes in Eukaryotes. Notably, despite a huge number of lncRNAs are expressed in the Central Nervous System (CNS), only a few of them have been characterized in terms of molecular structure, gene expression regulation and function. In the present study, we identify linc-NeD125 as a novel cytoplasmic, neuronal-induced long intergenic non coding RNA (lincRNA). Linc-NeD125 represents the host gene for miR-125b-1, a microRNA with an established role as negative regulator of human neuroblastoma cell proliferation. Here, we demonstrate that these two overlapping non coding RNAs are coordinately induced during in vitro neuronal differentiation, and that their expression is regulated by different mechanisms. While the production of miR-125b-1 relies on transcriptional regulation, linc-NeD125 is controlled at the post-transcriptional level, through modulation of its stability. We also demonstrate that linc-NeD125 functions independently of the hosted microRNA, by reducing cell proliferation and activating the antiapoptotic factor BCL-2.


Asunto(s)
MicroARNs/genética , Neuroblastoma/genética , Neuroblastoma/patología , ARN Largo no Codificante/genética , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología , Filogenia , ARN Largo no Codificante/metabolismo
13.
RNA Biol ; 11(9): 1105-12, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483045

RESUMEN

Musashi1 is an RNA binding protein that controls the neural cell fate, being involved in maintaining neural progenitors in their proliferative state. In particular, its downregulation is needed for triggering early neural differentiation programs. In this study, we profiled microRNA expression during the transition from neural progenitors to differentiated astrocytes and underscored 2 upregulated microRNAs, miR-23a and miR-125b, that sinergically act to restrain Musashi1 expression, thus creating a regulatory module controlling neural progenitor proliferation.


Asunto(s)
Proliferación Celular , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Proteínas de Unión al ARN/metabolismo , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/metabolismo , Técnicas para Inmunoenzimas , Ratones , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activación Transcripcional
14.
PLoS One ; 7(7): e40269, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848373

RESUMEN

The transcription factor ID2 is an important repressor of neural differentiation strongly implicated in nervous system cancers. MicroRNAs (miRNAs) are increasingly involved in differentiation control and cancer development. Here we show that two miRNAs upregulated on differentiation of neuroblastoma cells--miR-9 and miR-103--restrain ID2 expression by directly targeting the coding sequence and 3' untranslated region of the ID2 encoding messenger RNA, respectively. Notably, the two miRNAs show an inverse correlation with ID2 during neuroblastoma cell differentiation induced by retinoic acid. Overexpression of miR-9 and miR-103 in neuroblastoma cells reduces proliferation and promotes differentiation, as it was shown to occur upon ID2 inhibition. Conversely, an ID2 mutant that cannot be targeted by either miRNA prevents retinoic acid-induced differentiation more efficient than wild-type ID2. These findings reveal a new regulatory module involving two microRNAs upregulated during neural differentiation that directly target expression of the key differentiation inhibitor ID2, suggesting that its alteration may be involved in neural cancer development.


Asunto(s)
Antineoplásicos/farmacología , Diferenciación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína 2 Inhibidora de la Diferenciación/biosíntesis , MicroARNs/biosíntesis , Proteínas de Neoplasias/biosíntesis , Neuroblastoma/metabolismo , ARN Neoplásico/biosíntesis , Tretinoina/farmacología , Animales , Bovinos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteína 2 Inhibidora de la Diferenciación/genética , Macaca mulatta , Ratones , MicroARNs/genética , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patología , ARN Neoplásico/genética , Ratas , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
15.
ChemMedChem ; 6(10): 1797-805, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21805647

RESUMEN

The XendoU family of enzymes includes several proteins displaying high sequence homology. The members characterized so far are endoribonucleases sharing similar biochemical properties and a common architecture in their active sites. Despite their similarities, these proteins are involved in distinct RNA-processing pathways in different organisms. The amphibian XendoU participates in the biosynthesis of small nucleolar RNAs, the human PP11 is supposed to play specialized roles in placental tissue, and NendoU has critical function in coronavirus replication. Notably, XendoU family members have been implicated in human pathologies such as cancer and respiratory diseases: PP11 is aberrantly expressed in various tumors, while NendoU activity has been associated with respiratory infections by pathogenic coronaviruses. The present study is aimed at identifying small molecules that may selectively interfere with these enzymatic activities. Combining structure-based virtual screening and experimental approaches, we identified four molecules that specifically inhibited the catalytic activity of XendoU and PP11 in the low micromolar range. Moreover, docking experiments strongly suggested that these compounds might also bind to the active site of NendoU, thus impairing the catalytic activity essential for the coronavirus life cycle. The identified compounds, while allowing deep investigation of the molecular functions of this enzyme family, may also represent leads for the development of new therapeutic tools.


Asunto(s)
Endorribonucleasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Bibliotecas de Moléculas Pequeñas/química , Proteínas de Xenopus/antagonistas & inhibidores , Animales , Sitios de Unión , Dominio Catalítico , Simulación por Computador , Endorribonucleasas/metabolismo , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Proteínas Gestacionales/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
16.
Nucleic Acids Res ; 38(20): 6895-905, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20624818

RESUMEN

miRNAs play key roles in the nervous system, where they mark distinct developmental stages. Accordingly, dysregulation of miRNA expression may have profound effects on neuronal physiology and pathology, including cancer. Among the neuronal miRNAs, miR-9 was shown to be upregulated during in vitro neuronal differentiation and downregulated in 50% of primary neuroblastoma tumors, suggesting a potential function as an oncosuppressor gene. In this study we characterized the promoter and the transcriptional regulation of the miR-9-2 gene during neuronal differentiation. We found that, despite its localization inside an exon of a putative host-gene, miR-9-2 is expressed as an independent unit with the promoter located in the upstream intron. By promoter fusion and mutational analyses, together with RNAi and Chromatin immunoprecipitation assays, we demonstrated that the concerted action of the master transcriptional factors RE1-silencing transcription factor (REST) and cAMP-response element binding protein (CREB) on miR-9-2 promoter induces miRNA expression during differentiation. We showed that the repressor REST inhibits the activity of the miR-9-2 promoter in undifferentiated neuroblastoma cells, whereas REST dismissal and phosphorylation of CREB trigger transcription in differentiating cells. Finally, a regulatory feed-back mechanism, in which the reciprocal action of miR-9 and REST may be relevant for the maintenance of the neuronal differentiation program, is shown.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , MicroARNs/genética , Neuronas/metabolismo , Proteínas Represoras/metabolismo , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , MicroARNs/metabolismo , Neuronas/citología , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
17.
Int J Cancer ; 124(3): 568-77, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18973228

RESUMEN

Medulloblastoma is an aggressive brain malignancy with high incidence in childhood. Current treatment approaches have limited efficacy and severe side effects. Therefore, new risk-adapted therapeutic strategies based on molecular classification are required. MicroRNA expression analysis has emerged as a powerful tool to identify candidate molecules playing an important role in a large number of malignancies. However, no data are yet available on human primary medulloblastomas. A high throughput microRNA expression profiles was performed in human primary medulloblastoma specimens to investigate microRNA involvement in medulloblastoma carcinogenesis. We identified specific microRNA expression patterns which distinguish medulloblastoma differing in histotypes (anaplastic, classic and desmoplastic), in molecular features (ErbB2 or c-Myc overexpressing tumors) and in disease-risk stratification. MicroRNAs expression profile clearly differentiates medulloblastoma from either adult or fetal normal cerebellar tissues. Only a few microRNAs displayed upregulated expression, while most of them were downregulated in tumor samples, suggesting a tumor growth-inhibitory function. This property has been addressed for miR-9 and miR-125a, whose rescued expression promoted medulloblastoma cell growth arrest and apoptosis while targeting the proproliferative truncated TrkC isoform. In conclusion, misregulated microRNA expression profiles characterize human medulloblastomas, and may provide potential targets for novel therapeutic strategies.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/genética , Perfilación de la Expresión Génica , Meduloblastoma/genética , MicroARNs , Apoptosis/fisiología , Northern Blotting , Proliferación Celular , Neoplasias Cerebelosas/patología , Preescolar , Femenino , Humanos , Masculino , Meduloblastoma/patología , Receptor trkC/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
J Biol Chem ; 283(50): 34712-9, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18936097

RESUMEN

Human PP11 (placental protein 11) was previously described as a serine protease specifically expressed in the syncytiotrophoblast and in numerous tumor tissues. Several PP11-like proteins were annotated in distantly related organisms, such as worms and mammals, suggesting their involvement in evolutionarily conserved processes. Based on sequence similarity, human PP11 was included in a protein family whose characterized members are XendoU, a Xenopus laevis endoribonuclease involved in small nucleolar RNA processing, and Nsp15, an endoribonuclease essential for coronavirus replication. Here we show that the bacterially expressed human PP11 displays RNA binding capability and cleaves single stranded RNA in a Mn(2+)-dependent manner at uridylates, to produce molecules with 2',3'-cyclic phosphate ends. These features, together with structural and mutagenesis analyses, which identified the potential active site residues, reveal striking parallels to the amphibian XendoU and assign a ribonuclease function to PP11. This newly discovered enzymatic activity places PP11-like proteins in a completely new perspective.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Endorribonucleasas/metabolismo , Proteínas Gestacionales/fisiología , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Catálisis , Dominio Catalítico , Humanos , Datos de Secuencia Molecular , Mutagénesis , Proteínas Gestacionales/metabolismo , Unión Proteica , ARN/metabolismo , ARN Bicatenario/química , Xenopus laevis
19.
Proc Natl Acad Sci U S A ; 104(19): 7957-62, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17483472

RESUMEN

MicroRNAs (miRNAs) are tiny noncoding RNAs whose function as modulators of gene expression is crucial for the proper control of cell growth and differentiation. Although the profile of miRNA expression has been defined for many different cellular systems, the elucidation of the regulatory networks in which they are involved is only just emerging. In this work, we identify a crucial role for three neuronal miRNAs (9, 125a, and 125b) in controlling human neuroblastoma cell proliferation. We show that these molecules act in an additive manner by repressing a common target, the truncated isoform of the neurotrophin receptor tropomyosin-related kinase C, and we demonstrate that the down-regulation of this isoform is critical for regulating neuroblastoma cell growth. Consistently with their function, these miRNAs were found to be down-modulated in primary neuroblastoma tumors.


Asunto(s)
MicroARNs/fisiología , Neuroblastoma/patología , Receptor trkC/fisiología , Línea Celular Tumoral , Proliferación Celular , Humanos , MicroARNs/análisis
20.
J Biol Chem ; 280(19): 18996-9002, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15755742

RESUMEN

XendoU is the endoribonuclease involved in the biosynthesis of a specific subclass of Xenopus laevis intron-encoded small nucleolar RNAs. XendoU has no homology to any known cellular RNase, although it has sequence similarity with proteins tentatively annotated as serine proteases. It has been recently shown that XendoU represents the cellular counterpart of a nidovirus replicative endoribonuclease (NendoU), which plays a critical role in viral replication and transcription. In this paper, we combined prediction and experimental data to define the amino acid residues directly involved in XendoU catalysis. Specifically, we find that XendoU residues Glu-161, Glu-167, His-162, His-178, and Lys-224 are essential for RNA cleavage, which occurs in the presence of manganese ions. Furthermore, we identified the RNA sequence required for XendoU binding and showed that the formation of XendoU-RNA complex is Mn2+-independent.


Asunto(s)
Endorribonucleasas/fisiología , ARN Nuclear Pequeño/metabolismo , Proteínas de Xenopus/fisiología , Secuencia de Aminoácidos , Animales , Catálisis , Dominio Catalítico , Clonación Molecular , Cartilla de ADN/química , Endorribonucleasas/química , Ácido Glutámico/química , Histidina/química , Intrones , Lisina/química , Manganeso/química , Datos de Secuencia Molecular , Mutación , Oligopéptidos/química , Filogenia , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Transcripción Genética , Xenopus , Proteínas de Xenopus/química , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...