Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 50(11): 7304-7312, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37818904

RESUMEN

BACKGROUND: In treatment planning for proton therapy a constant Relative Biological Effectiveness (RBE) of 1.1 is used, disregarding variations with linear energy transfer, clinical endpoint, or fractionation. PURPOSE: To present a methodology to analyze the variation of RBE with fractionation from clinical data of tumor control probability (TCP) and to apply it to study the response of prostate cancer to proton therapy. METHODS AND MATERIALS: We analyzed the dependence of the RBE on the dose per fraction by using the LQ model and the Poisson TCP formalism. Clinical tumor control probabilities for prostate cancer (low and intermediate risk) treated with photon and proton therapy for conventional fractionation (2 Gy(RBE)×37 fractions), moderate hypofractionation (3 Gy(RBE)×20 fractions) and hypofractionation (7.25 Gy(RBE)×5 fractions) were obtained from the literature and analyzed aiming at obtaining the RBE and its dependence on the dose per fraction. RESULTS: The theoretical analysis of the dependence of the RBE on the dose per fraction showed three distinct regions with RBE monotonically decreasing, increasing or staying constant with the dose per fraction, depending on the change of (α, ß) values between photon and proton irradiation (the equilibrium point being at (αp /ßp ) = (αX /ßX )(αX /αp )). An analysis of the clinical data showed RBE values that decline with increasing dose per fraction: for low risk RBE≈1.124, 1.119, and 1.102 for 1.82 Gy, 2.73 Gy and 6.59 Gy per fraction (physical proton doses), respectively; for intermediate risk RBE≈1.119 and 1.102 for 1.82 Gy and 6.59 Gy per fraction (physical proton doses), respectively. These values are nonetheless very close to the nominal 1.1 value. CONCLUSIONS: In this study, we have presented a methodology to analyze the RBE for different fractionations, and we used it to study clinical data for prostate cancer and evaluate the RBE versus dose per fraction. The analysis shows a monotonically decreasing RBE with increasing dose per fraction, which is expected from the LQ formalism and the changes in (α, ß) values between photon and proton irradiation. However, the calculations in this study have to be considered with care as they may be biased by limitations in the modeling assumptions and/or by the clinical data set used for the analysis.


Asunto(s)
Neoplasias de la Próstata , Terapia de Protones , Masculino , Humanos , Terapia de Protones/métodos , Efectividad Biológica Relativa , Protones , Neoplasias de la Próstata/radioterapia , Transferencia Lineal de Energía
2.
Phys Med Biol ; 68(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37827167

RESUMEN

Objective. The performance of silicon detectors with moderate internal gain, named low-gain avalanche diodes (LGADs), was studied to investigate their capability to discriminate and count single beam particles at high fluxes, in view of future applications for beam characterization and on-line beam monitoring in proton therapy.Approach. Dedicated LGAD detectors with an active thickness of 55µm and segmented in 2 mm2strips were characterized at two Italian proton-therapy facilities, CNAO in Pavia and the Proton Therapy Center of Trento, with proton beams provided by a synchrotron and a cyclotron, respectively. Signals from single beam particles were discriminated against a threshold and counted. The number of proton pulses for fixed energies and different particle fluxes was compared with the charge collected by a compact ionization chamber, to infer the input particle rates.Main results. The counting inefficiency due to the overlap of nearby signals was less than 1% up to particle rates in one strip of 1 MHz, corresponding to a mean fluence rate on the strip of about 5 × 107p/(cm2·s). Count-loss correction algorithms based on the logic combination of signals from two neighboring strips allow to extend the maximum counting rate by one order of magnitude. The same algorithms give additional information on the fine time structure of the beam.Significance. The direct counting of the number of beam protons with segmented silicon detectors allows to overcome some limitations of gas detectors typically employed for beam characterization and beam monitoring in particle therapy, providing faster response times, higher sensitivity, and independence of the counts from the particle energy.


Asunto(s)
Terapia de Protones , Radiometría , Radiometría/métodos , Protones , Silicio , Ciclotrones
3.
Med Phys ; 50(9): 5817-5827, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37493525

RESUMEN

BACKGROUND: The beam energy is one of the most significant parameters in particle therapy since it is directly correlated to the particles' penetration depth inside the patient. Nowadays, the range accuracy is guaranteed by offline routine quality control checks mainly performed with water phantoms, 2D detectors with PMMA wedges, or multi-layer ionization chambers. The latter feature low sensitivity, slow collection time, and response dependent on external parameters, which represent limiting factors for the quality controls of beams delivered with fast energy switching modalities, as foreseen in future treatments. In this context, a device based on solid-state detectors technology, able to perform a direct and absolute beam energy measurement, is proposed as a viable alternative for quality assurance measurements and beam commissioning, paving the way for online range monitoring and treatment verification. PURPOSE: This work follows the proof of concept of an energy monitoring system for clinical proton beams, based on Ultra Fast Silicon Detectors (featuring tenths of ps time resolution in 50 µm active thickness, and single particle detection capability) and time-of-flight techniques. An upgrade of such a system is presented here, together with the description of a dedicated self-calibration method, proving that this second prototype is able to assess the mean particles energy of a monoenergetic beam without any constraint on the beam temporal structure, neither any a priori knowledge of the beam energy for the calibration of the system. METHODS: A new detector geometry, consisting of sensors segmented in strips, has been designed and implemented in order to enhance the statistics of coincident protons, thus improving the accuracy of the measured time differences. The prototype was tested on the cyclotron proton beam of the Trento Protontherapy Center (TPC). In addition, a dedicated self-calibration method, exploiting the measurement of monoenergetic beams crossing the two telescope sensors for different flight distances, was introduced to remove the systematic uncertainties independently from any external reference. RESULTS: The novel calibration strategy was applied to the experimental data collected at TPC (Trento) and CNAO (Pavia). Deviations between measured and reference beam energies in the order of a few hundreds of keV with a maximum uncertainty of 0.5 MeV were found, in compliance with the clinically required water range accuracy of 1 mm. CONCLUSIONS: The presented version of the telescope system, minimally perturbative of the beam, relies on a few seconds of acquisition time to achieve the required clinical accuracy and therefore represents a feasible solution for beam commission, quality assurance checks, and online beam energy monitoring.


Asunto(s)
Terapia de Protones , Calibración , Terapia de Protones/normas , Factores de Tiempo , Humanos
4.
Med Phys ; 47(4): 1468-1480, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31971612

RESUMEN

PURPOSE: A retrospective analysis of the dose delivery system (DDS) performances of the initial clinical operation at CNAO (Centro Nazionale di Adroterapia Oncologica) is reported, and compared with the dose delivery accuracy following the implementation of a position feedback control. METHODS: Log files and raw data of the DDS were analyzed for every field of patients treated with protons and carbon ions between January 2012 and April 2013 (~3800 fields). To investigate the DDS accuracy, the spot positions and the number of particles per spot measured by the DDS and prescribed by the treatment planning system were compared for each field. The impact of deviations on dose distributions was studied by comparing, through the gamma-index method, 2 three-dimensional (3D) physical dose maps (one for prescribed, one for measured data), generated by a validated dose computation software. The maximum gamma and the percentage of points with gamma ≤ 1 (passing volume) were studied as a function of the treatment day, and correlated with the deviations from the prescription in the measured number of particles and spot positions. Finally, delivered dose distributions of same treatment plans were compared before and after the implementation of a feedback algorithm for the correction of small position deviations, to study the effect on the delivery quality. A double comparison of prescribed and measured 3D maps, before and after feedback implementation, is reported and studied for a representative treatment delivered in 2012, redelivered on a polymethyl methacrylate (PMMA) block in 2018. RESULTS: Systematic deviations of spot positions, mainly due to beam lateral offsets, were always found within 1.5 mm, with the exception of the initial clinical period. The number of particles was very stable, as possible deviations are exclusively related to the quantization error in the conversion from monitor counts to particles. For the chosen representative patient treatment, the gamma-index evaluation of prescribed and measured dose maps, before and after feedback implementation, showed a higher variability of maximum gamma for the 2012 irradiation, with respect to the reirradiation of 2018. However, the 2012 passing volume is >99.8% for the sum of all fields, which is comparable to the value of 2018, with the exception of one day with 98.2% passing volume, probably related to an instability of the accelerating system. CONCLUSIONS: A detailed retrospective analysis of the DDS performances in the initial period of CNAO clinical activity is reported. The spot position deviations are referable to beam lateral offset fluctuations, while almost no deviation was found in the number of particles. The impact of deviations on dose distributions showed that the position feedback implementation and the increased beam control capability acquired after the first years of clinical experience led to an evident improvement in the DDS stability, evaluated in terms of gamma-index as a measure of the impact on dose distributions. However, the clinical effect of the maximum gamma variability found in the 2012 representative irradiation is mitigated by averaging along the number of fractions, and the high percentage of passing volumes confirmed the accuracy of the delivery even before the feedback implementation.


Asunto(s)
Dosis de Radiación , Radioterapia Asistida por Computador/métodos , Radioterapia de Iones Pesados , Humanos , Terapia de Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
5.
Med Phys ; 45(11): e1051-e1072, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30421809

RESUMEN

This article is intended to present the different types of particle and radiation detectors available for applications in particle therapy. Several types of detectors and sensors exist for measurements of absorbed dose in reference and nonreference conditions and the ones in use for beam monitoring. Therefore, this manuscript focuses on the following applications: (a) primary methods for dosimetry in ion beams, (b) measurements of absorbed dose in realistic patient-specific scenarios with different dose delivery configurations, and (c) beam monitoring. Water and graphite calorimeters, Faraday cups, ionization based gas detectors are described first, followed by the description of the protocols for proton and ion dosimetry. Then films, scintillator and solid-state detectors are reviewed. Finally, several types of ionization chambers (large, pinpoint, arrays of chambers arranged in regular 1D or 2D pattern, parallel-plate configuration with large integral electrodes or with anode segmented in strips or pixels, multi-wire, and the multi-gap prototype) have been considered. New beam monitors to deal with a wide range of intensity and pulsed beams expected from new accelerators, different dose fractionation and advanced delivery techniques are presented. The existing detectors available for particle therapy have been described taking into account the different requirements for devices used in reference and nonreference conditions and the ones designed for beam monitoring.


Asunto(s)
Radiometría/métodos , Calorimetría , Radiometría/instrumentación , Conteo por Cintilación
6.
Sci Rep ; 8(1): 4100, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511282

RESUMEN

Particle therapy exploits the energy deposition pattern of hadron beams. The narrow Bragg Peak at the end of range is a major advantage but range uncertainties can cause severe damage and require online verification to maximise the effectiveness in clinics. In-beam Positron Emission Tomography (PET) is a non-invasive, promising in-vivo technique, which consists in the measurement of the ß+ activity induced by beam-tissue interactions during treatment, and presents the highest correlation of the measured activity distribution with the deposited dose, since it is not much influenced by biological washout. Here we report the first clinical results obtained with a state-of-the-art in-beam PET scanner, with on-the-fly reconstruction of the activity distribution during irradiation. An automated time-resolved quantitative analysis was tested on a lacrimal gland carcinoma case, monitored during two consecutive treatment sessions. The 3D activity map was reconstructed every 10 s, with an average delay between beam delivery and image availability of about 6 s. The correlation coefficient of 3D activity maps for the two sessions (above 0.9 after 120 s) and the range agreement (within 1 mm) prove the suitability of in-beam PET for online range verification during treatment, a crucial step towards adaptive strategies in particle therapy.


Asunto(s)
Carcinoma/radioterapia , Aparato Lagrimal/patología , Tomografía de Emisión de Positrones/métodos , Terapia de Protones/métodos , Humanos , Imagenología Tridimensional/métodos , Resultado del Tratamiento
7.
Med Phys ; 44(4): 1577-1589, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28130821

RESUMEN

PURPOSE: Advanced ion beam therapeutic techniques, such as hypofractionation, respiratory gating, or laser-based pulsed beams, have dose rate time structures which are substantially different from those found in conventional approaches. The biological impact of the time structure is mediated through the ß parameter in the linear quadratic (LQ) model. The aim of this study was to assess the impact of changes in the value of the ß parameter on the treatment outcomes, also accounting for noninstantaneous intrafraction dose delivery or fractionation and comparing the effects of using different primary ions. METHODS: An original formulation of the microdosimetric kinetic model (MKM) is used (named MCt-MKM), in which a Monte Carlo (MC) approach was introduced to account for the stochastic spatio-temporal correlations characteristic of the irradiations and the cellular repair kinetics. A modified version of the kinetic equations, validated on experimental cell survival in vitro data, was also introduced. The model, trained on the HSG cells, was used to evaluate the relative biological effectiveness (RBE) for treatments with acute and protracted fractions. Exemplary cases of prostate cancer irradiated with different ion beams were evaluated to assess the impact of the temporal effects. RESULTS: The LQ parameters for a range of cell lines (V79, HSG, and T1) and ion species (H, He, C, and Ne) were evaluated and compared with the experimental data available in the literature, with good results. Notably, in contrast to the original MKM formulation, the MCt-MKM explicitly predicts an ion and LET-dependent ß compatible with observations. The data from a split-dose experiment were used to experimentally determine the value of the parameter related to the cellular repair kinetics. Concerning the clinical case considered, an RBE decrease was observed, depending on the dose, ion, and LET, exceeding up to 3% of the acute value in the case of a protraction in the delivery of 10 min. The intercomparison between different ions shows that the clinical optimality is strongly dependent on a complex interplay between the different physical and biological quantities considered. CONCLUSIONS: The present study provides a framework for exploiting the temporal effects of dose delivery. The results show the possibility of optimizing the treatment outcomes accounting for the correlation between the specific dose rate time structure and the spatial characteristic of the LET distribution, depending on the ion type used.


Asunto(s)
Modelos Biológicos , Método de Montecarlo , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador , Línea Celular Tumoral , Humanos , Cinética , Radiometría , Dosificación Radioterapéutica , Efectividad Biológica Relativa , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...