Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999061

RESUMEN

Kappa opioid receptor (KOR) antagonists have potential therapeutic applications in the treatment of stress-induced relapse to substance abuse and mood disorders. The dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,D-Ala8]dynorphin A-(1-11)-NH2) exhibits potent and selective kappa opioid receptor antagonism. Multiple cyclizations in longer peptides, such as dynorphin and its analogs, can extend the conformational constraint to additional regions of the peptide beyond what is typically constrained by a single cyclization. Here, we report the design, synthesis, and pharmacological evaluation of a bicyclic arodyn analog with two constraints in the opioid peptide sequence. The peptide, designed based on structure-activity relationships of monocyclic arodyn analogs, was synthesized by solid-phase peptide synthesis and cyclized by sequential ring-closing metathesis (RCM) in the C- and N-terminal sequences. Molecular modeling studies suggest similar interactions of key aromatic and basic residues in the bicyclic peptide with KOR as found in the cryoEM structure of KOR-bound dynorphin, despite substantial differences in the backbone conformations of the two peptides. The bicyclic peptide's affinities at KOR and mu opioid receptors (MOR) were determined in radioligand binding assays, and its KOR antagonism was determined in the [35S]GTPγS assay in KOR-expressing cells. The bicyclic analog retains KOR affinity and selectivity (Ki = 26 nM, 97-fold selectivity over MOR) similar to arodyn and exhibits potent KOR antagonism in the dynorphin-stimulated [35S]GTPγS assay. This bicyclic peptide represents a promising advance in preparing cyclic opioid peptide ligands and opens avenues for the rational design of additional bicyclic opioid peptide analogs.


Asunto(s)
Dinorfinas , Receptores Opioides kappa , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/metabolismo , Dinorfinas/química , Dinorfinas/farmacología , Humanos , Animales , Relación Estructura-Actividad , Modelos Moleculares , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/síntesis química , Secuencia de Aminoácidos
2.
J Med Chem ; 64(6): 3153-3164, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33688737

RESUMEN

Kappa opioid receptor (KOR) antagonists have recently shown potential for treating drug addiction and mood disorders. The linear acetylated dynorphin A analog arodyn (Ac[Phe1,2,3,Arg4,d-Ala8]dynorphin A-(1-11)NH2), synthesized in our laboratory, demonstrated potent and selective KOR antagonism. Cyclization of arodyn could potentially stabilize the bioactive conformation and enhance its metabolic stability. The cyclization strategy employed involved ring closing metathesis between adjacent meta- or para-substituted Tyr(allyl) residues in the "message" sequence that were predicted in a docking study to yield analogs that would bind to the KOR with binding poses similar to arodyn. Consistent with the modeling, the resulting analogs retained KOR affinity similar to arodyn; the peptides involving cyclization between para O-allyl groups also retained high KOR selectivity, with one analog exhibiting KOR antagonist potency (KB = 15 nM) similar to arodyn. These promising cyclized analogs with constrained aromatic residues represent novel leads for further exploration of KOR pharmacology.


Asunto(s)
Dinorfinas/química , Dinorfinas/farmacología , Receptores Opioides kappa/antagonistas & inhibidores , Ciclización , Dinorfinas/síntesis química , Humanos , Modelos Moleculares , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Receptores Opioides kappa/metabolismo
3.
J Org Chem ; 85(3): 1407-1415, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31880448

RESUMEN

We are exploring constraining aromatic residues in the kappa opioid receptor selective antagonist arodyn (Ac[Phe1,2,3,Arg4,d-Ala8]dynorphin A(1-11)-NH2) by ring closing metathesis (RCM) involving tyrosine(O-allyl) (Tyr(All)), but desallyl products limited the yields of the desired cyclic peptide. The model dipeptide Fmoc-Tyr(All)-Tyr(All) was used to explore different reaction conditions, including the use of isomerization suppressants, to minimize formation of the desallyl products and enhance formation of the desired RCM product. Reaction conditions were identified that enhanced the RCM product yield while suppressing desallyl products using both second-generation Grubbs and second-generation Hoveyda-Grubbs catalysts. These optimized reaction conditions were then applied to the cyclization of a tripeptide and an arodyn analog resulting in ≥70% conversion to the desired cyclic peptides. These strategies should be applicable to RCM involving Tyr(All) and similar residues in peptide and peptidomimetic cyclizations performed on solid phase.


Asunto(s)
Péptidos Cíclicos , Tirosina , Ciclización , Receptores Opioides kappa , Técnicas de Síntesis en Fase Sólida
4.
Cancer Biol Ther ; 18(8): 571-583, 2017 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-28692379

RESUMEN

The oncoprotein c-Myc is often overexpressed in cancer cells, and the stability of this protein has major significance in deciding the fate of a cell. Thus, targeting c-Myc levels is an attractive approach for developing therapeutic agents for cancer treatment. In this study, we report the anti-cancer activity of the macrocyclic peptides [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) and the natural product CJ-15,208 (cyclo[Phe-D-Pro-Phe-Trp]). [D-Trp]CJ-15,208 reduced c-Myc protein levels in prostate cancer cells and decreased cell proliferation with IC50 values ranging from 2.0 to 16 µM in multiple PC cell lines. [D-Trp]CJ-15,208 induced early and late apoptosis in PC-3 cells following 48 hours treatment, and growth arrest in the G2 cell cycle phase following both 24 and 48 hours treatment. Down regulation of c-Myc in PC-3 cells resulted in loss of sensitivity to [D-Trp]CJ-15,208 treatment, while overexpression of c-Myc in HEK-293 cells imparted sensitivity of these cells to [D-Trp]CJ-15,208 treatment. This macrocyclic tetrapeptide also regulated PP2A by reducing the levels of its phosphorylated form which regulates the stability of cellular c-Myc protein. Thus [D-Trp]CJ-15,208 represents a new lead compound for the potential development of an effective treatment of prostate cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Péptidos Cíclicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Abajo , Células HEK293 , Humanos , Masculino , Péptidos Cíclicos/química , Péptidos Cíclicos/uso terapéutico , Fosforilación , Próstata/citología , Próstata/patología , Neoplasias de la Próstata/patología , Estereoisomerismo , Triptófano/química , Triptófano/farmacología , Triptófano/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA