Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Molecules ; 29(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38338422

The fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field. Specific AMPs, such as lactoferricin B (LfcinB), have demonstrated strong antibacterial, antifungal, and antiparasitic activity, as well as valuable anticancer activity, proving beneficial in the development of anticancer conjugates. The resulting conjugates offer potential dual functionality, acting as both an anticancer and an antimicrobial agent. This is especially necessary in cancer treatment, where microbial infections pose a critical risk. Leukemic cells frequently exhibit altered outer lipid membranes compared to healthy cells, making them more sensitive to compounds that interfere with their membrane. In this study, we revisited and reanalyzed our earlier research on LfcinB and its conjugates. Furthermore, we carried out new experiments with a specific focus on cell proliferation, changes in membrane asymmetric phosphatidylserine location, intracellular reactive oxygen species (ROS) generation, mitochondrial functions, and in vitro bacterial topoisomerase inhibition.


Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Lactoferrin/pharmacology , Lactoferrin/chemistry , Anti-Infective Agents/pharmacology , Peptides/chemistry , Microbial Sensitivity Tests
2.
Molecules ; 28(23)2023 Nov 25.
Article En | MEDLINE | ID: mdl-38067510

Arginine, due to the guanidine moiety, increases peptides' hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging. Here, we present a new, optimized strategy to obtain arginine building blocks with increased lipophilicity that were successfully utilized in the solid-phase peptide synthesis of novel arginine vasopressin prodrugs.


Arginine , Solid-Phase Synthesis Techniques , Arginine/chemistry , Peptides/chemistry , Guanidines
3.
Mol Pharmacol ; 105(1): 39-53, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37977824

Hematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10). Here, we demonstrate that the resultant compounds display promising biologic activities in preclinical studies. These novel conjugates not only exhibit potent antimicrobial effects but are also selective against leukemia cells. The cytotoxic mechanism involves rapid disruption of cell membrane asymmetry leading to membrane damage. Importantly, these conjugates penetrated mammalian cells, accumulating within the nuclear membrane without significant effect on cellular architecture or mitochondrial function. Molecular simulations elucidated the aggregation tendencies of TP10 conjugates within lipid bilayers, resulting in membrane disruption and permeabilization. Moreover, mass spectrometry analysis confirmed efficient reduction of disulfide bonds within TP10 conjugates, facilitating release and activation of the fluoroquinolone derivatives. Intriguingly, these compounds inhibited human topoisomerases, setting them apart from traditional fluoroquinolones. Remarkably, TP10 conjugates generated lower intracellular levels of reactive oxygen species compared with CIP and LVX. The combination of antibacterial and antileukemic properties, coupled with selective cytostatic effects and minimal toxicity toward healthy cells, positions TP10 derivatives as promising candidates for innovative therapeutic approaches in the context of antileukemic HCT. This study highlights their potential in search of more effective leukemia treatments. SIGNIFICANCE STATEMENT: Fluoroquinolones are commonly used antibiotics, while transportan 10 (TP10) is a cell-penetrating peptide (CPP) with anticancer properties. In HCT, microbial infections are the primary cause of illness and death. Combining TP10 with fluoroquinolones enhanced their effects on different cell types. The dual pharmacological action of these conjugates offers a promising proof-of-concept solution for leukemic patients undergoing HCT. Strategically designed therapeutics, incorporating CPPs with antibacterial properties, have the potential to reduce microbial infections in the treatment of malignancies.


Antineoplastic Agents , Cell-Penetrating Peptides , Leukemia , Animals , Humans , Fluoroquinolones/pharmacology , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Antineoplastic Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Leukemia/drug therapy , Cell Transplantation , Mammals/metabolism
4.
Sci Rep ; 13(1): 14228, 2023 08 30.
Article En | MEDLINE | ID: mdl-37648723

The present studies show the effect of the Venetin-1 protein-polysaccharide complex obtained from the coelomic fluid of the earthworm Dendrobaena veneta on Candida albicans cells. They are a continuation of research on the mechanisms of action, cellular targets, and modes of cell death. After the action of Venetin-1, a reduced survival rate of the yeast cells was noted. The cells were observed to be enlarged compared to the controls and deformed. In addition, an increase in the number of cells with clearly enlarged vacuoles was noted. The detected autophagy process was confirmed using differential interference contrast, fluorescence microscopy, and transmission electron microscopy. Autophagic vesicles were best visible after incubation of fungus cells with the Venetin-1 complex at a concentration of 50 and 100 µg mL-1. The changes in the vacuoles were accompanied by changes in the size of mitochondria, which is probably related to the previously documented oxidative stress. The aggregation properties of Venetin-1 were characterized. Based on the results of the zeta potential at the Venetin-1/KCl interface, the pHiep = 4 point was determined, i.e. the zeta potential becomes positive above pH = 4 and is negative below this value, which may affect the electrostatic interactions with other particles surrounding Venetin-1.


Nanoparticles , Oligochaeta , Animals , Candida albicans , Autophagy , Protease Inhibitors
5.
ACS Med Chem Lett ; 14(4): 458-465, 2023 Apr 13.
Article En | MEDLINE | ID: mdl-37077382

Furin is a human serine protease responsible for activating numerous physiologically relevant cell substrates and is also involved in the development of various pathological conditions, including inflammatory diseases, cancers, and viral and bacterial infections. Therefore, compounds with the ability to inhibit furin's proteolytic action are regarded as potential therapeutics. Here we took the combinatorial chemistry approach (library consisting of 2000 peptides) to obtain new, strong, and stable peptide furin inhibitors. The extensively studied trypsin inhibitor SFTI-1 was used as a leading structure. A selected monocylic inhibitor was further modified to finally yield five mono- or bicyclic furin inhibitors with values of K i in the subnanomolar range. Inhibitor 5 was the most active (K i = 0.21 nM) and significantly more proteolytically resistant than the reference furin inhibitor described in the literature. Moreover, it reduced furin-like activity in PANC-1 cell lysate. Detailed analysis of furin-inhibitor complexes using molecular dynamics simulations is also reported.

6.
Int J Mol Sci ; 23(6)2022 Mar 12.
Article En | MEDLINE | ID: mdl-35328489

Human neurohormone vasopressin (AVP) is synthesized in overlapping regions in the hypothalamus. It is mainly known for its vasoconstricting abilities, and it is responsible for the regulation of plasma osmolality by maintaining fluid homeostasis. Over years, many attempts have been made to modify this hormone and find AVP analogues with different pharmacological profiles that could overcome its limitations. Non-peptide AVP analogues with low molecular weight presented good affinity to AVP receptors. Natural peptide counterparts, found in animals, are successfully applied as therapeutics; for instance, lypressin used in treatment of diabetes insipidus. Synthetic peptide analogues compensate for the shortcomings of AVP. Desmopressin is more resistant to proteolysis and presents mainly antidiuretic effects, while terlipressin is a long-acting AVP analogue and a drug recommended in the treatment of varicose bleeding in patients with liver cirrhosis. Recently published results on diverse applications of AVP analogues in medicinal practice, including potential lypressin, terlipressin and ornipressin in the treatment of SARS-CoV-2, are discussed.


COVID-19 Drug Treatment , Diabetes Insipidus/prevention & control , SARS-CoV-2/drug effects , Vasopressins/therapeutic use , Animals , Antidiuretic Agents/chemistry , Antidiuretic Agents/metabolism , Antidiuretic Agents/therapeutic use , COVID-19/epidemiology , COVID-19/virology , Deamino Arginine Vasopressin/chemistry , Deamino Arginine Vasopressin/metabolism , Deamino Arginine Vasopressin/therapeutic use , Diabetes Insipidus/metabolism , Hemostatics/chemistry , Hemostatics/metabolism , Hemostatics/therapeutic use , Humans , Lypressin/chemistry , Lypressin/metabolism , Lypressin/therapeutic use , Molecular Structure , Ornipressin/chemistry , Ornipressin/metabolism , Ornipressin/therapeutic use , Pandemics/prevention & control , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Terlipressin/chemistry , Terlipressin/metabolism , Terlipressin/therapeutic use , Vasopressins/chemistry , Vasopressins/metabolism
7.
Sci Rep ; 11(1): 7051, 2021 03 29.
Article En | MEDLINE | ID: mdl-33782419

Peptides are commonly used as biosensors for analytes such as metal ions as they have natural binding preferences. In our previous peptide-based impedimetric metal ion biosensors, a monolayer of the peptide was anchored covalently to the electrode. Binding of metal ions resulted in a conformational change of the oxytocin peptide in the monolayer, which was measured using electrochemical impedance spectroscopy. Here, we demonstrate that sensing can be achieved also when the oxytocin is non-covalently integrated into an alkanethiol host monolayer. We show that ion-binding cause morphological changes to the dense host layer, which translates into enhanced impedimetric signals compared to direct covalent assembly strategies. This biosensor proved selective and sensitive for Zn2+ ions in the range of nano- to micro-molar concentrations. This strategy offers an approach to utilize peptide flexibility in monitoring their response to the environment while embedded in a hydrophobic monolayer.


Oxytocin/chemistry , Sulfhydryl Compounds/chemistry , Zinc/analysis , Biosensing Techniques , Dielectric Spectroscopy/methods , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Microscopy, Atomic Force/methods
8.
Pharmaceuticals (Basel) ; 13(12)2020 Nov 25.
Article En | MEDLINE | ID: mdl-33255583

Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants' endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants' protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians' skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs' and BBLTIs' inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.

9.
Peptides ; 134: 170399, 2020 12.
Article En | MEDLINE | ID: mdl-32889021

Humanin (HN) is a 24-amino acid mitochondrial-derived peptide, best known for its ability to protect neurons from damage caused by ischemic stroke and neurodegenerative insults and cardiomyocytes from myocardial infarction or doxorubicin (Dox)-induced cardiotoxicity. This study examines the neuroprotective and myoprotective effects of HN novel synthetic analogs HUJInin and c(D-Ser14-HN), prepared by solid-phase peptide synthesis. The cellular models employed were oxygen-glucose-deprivation (OGD) followed by reoxygenation (R)-induced neurotoxicity in PC12 and SH-SY5Y neuronal cell cultures and Dox-induced cardiotoxicity in H9c2 and C2C12 myoblast cell cultures, respectively. Necrotic and apoptotic cell death was measured by LDH release and caspase-3 activity. Erk 1/2 and AKT phosphorylations were examined by western blotting. Mitochondrial calcium and mitochondrial membrane potential were measured using the fluorescent dye tetramethylrhodamine-methyl ester. It was found that HUJInin and c(D-Ser14-HN) conferred significant dose-dependent neuroprotection, a phenomenon related to attenuation of OGD insult-induced Erk 1/2 phosphorylation, stimulation of AKT phosphorylation and improvement of mitochondrial functions. These peptides also conferred myoprotective effect towards Dox-induced apo-necrotic cell death insults. HUJInin and c(D-Ser14-HN) synthetic analogs may provide new lead compounds for the development of a potential candidate drug for stroke treatment and/or Dox-induced cardiotoxicity therapy in cancer patients.


Doxorubicin/toxicity , Intracellular Signaling Peptides and Proteins/pharmacology , Ischemia/physiopathology , Mitochondria/drug effects , Myoblasts/drug effects , Neurons/drug effects , Animals , Antibiotics, Antineoplastic/toxicity , Apoptosis/drug effects , Cells, Cultured , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Mice , Mitochondria/metabolism , Mitochondria/pathology , Myoblasts/metabolism , Myoblasts/pathology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Phosphorylation , Rats
10.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article En | MEDLINE | ID: mdl-32630159

Seven conjugates composed of well-known fluoroquinolone antibacterial agents, ciprofloxacin (CIP) or levofloxacin (LVX), and a cell-penetrating peptide transportan 10 (TP10-NH2) were synthesised. The drugs were covalently bound to the peptide via an amide bond, methylenecarbonyl moiety, or a disulfide bridge. Conjugation of fluoroquinolones to TP10-NH2 resulted in congeners demonstrating antifungal in vitro activity against human pathogenic yeasts of the Candida genus (MICs in the 6.25 - 100 µM range), whereas the components were poorly active. The antibacterial in vitro activity of most of the conjugates was lower than the activity of CIP or LVX, but the antibacterial effect of CIP-S-S-TP10-NH2 was similar to the mother fluoroquinolone. Additionally, for two representative CIP and LVX conjugates, a rapid bactericidal effect was shown. Compared to fluoroquinolones, TP10-NH2 and the majority of its conjugates generated a relatively low level of reactive oxygen species (ROS) in human embryonic kidney cells (HEK293) and human myeloid leukemia cells (HL-60). The conjugates exhibited cytotoxicity against three cell lines, HEK293, HepG2 (human liver cancer cell line), and LLC-PK1 (old male pig kidney cells), with IC50 values in the 10 - 100 µM range and hemolytic activity. The mammalian toxicity was due to the intrinsic cytoplasmic membrane disruption activity of TP10-NH2 since fluoroquinolones themselves were not cytotoxic. Nevertheless, the selectivity index values of the conjugates, both for the bacteria and human pathogenic yeasts, remained favourable.


Anti-Infective Agents/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cell-Penetrating Peptides , Ciprofloxacin , Levofloxacin , Recombinant Fusion Proteins , Animals , Anti-Infective Agents/pharmacology , Candida/drug effects , Candida/metabolism , Drug Resistance, Bacterial , HEK293 Cells , HL-60 Cells , Hep G2 Cells , Humans , Microbial Sensitivity Tests , Swine
11.
Biochimie ; 171-172: 178-186, 2020.
Article En | MEDLINE | ID: mdl-32169666

A gradual truncation of the primary structure of frog skin-derived Huia versabilis Bowman-Birk peptidic inhibitor (HV-BBI) resulted in 18-times stronger inhibitor of matriptase-1 (peptide 6, Ki = 8 nm) in comparison to the full-length HV-BBI (Ki = 155 nm). Analogous increase in the inhibitory activity in correlation with the peptide length reduction was not observed in case of other serine proteases, bovine trypsin (Ki = 151 nm for peptide 6 and Ki = 120 nm for HV-BBI) and plasmin (Ki = 120 nm for peptide 6 and 82 nm for HV-BBI). Weaker binding affinity to these enzymes emphasized an inhibitory specificity of peptide 6. Molecular dynamic analysis revealed that the observed variations in the binding affinity of peptide 6 and HV-BBI with matriptase-1 are associated with the entropic differences of the unbound peptides. Moreover, several aspects explaining differences in the inhibition of matriptase-1 by peptide 6 (bearing the C-terminal amide group) and its two analogues, peptide 6∗ (having the C-terminal carboxyl group, Ki = 473 nm) and cyclic peptide 6∗∗ (Ki = 533 nm), both exhibiting more than 50-fold reduced inhibitory potency, were discovered. It was also shown that peptide 6 presented significantly higher resistance to proteolytic degradation in human serum than HV-BBI. Additional investigations revealed that, in contrast to some amphibian-derived inhibitors, HV-BBI and its truncated analogues do not possess bactericidal activity, thus they cannot be considered as bifunctional agents.


Peptides , Serine Endopeptidases/metabolism , Animals , Cattle , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Peptides/chemistry , Peptides/pharmacology , Proteolysis
12.
ACS Chem Biol ; 14(10): 2233-2242, 2019 10 18.
Article En | MEDLINE | ID: mdl-31513374

Recent studies have shown that modified human lactoferrin 20-31 fragment, named HLopt2, possesses antibacterial and antifungal activity. Thus, we decided to synthesize and evaluate the biological activity of a series of conjugates based on this peptide and one of the antimicrobials with proven antibacterial (ciprofloxacin, CIP, and levofloxacin, LVX) or antifungal (fluconazole, FLC) activity. The drugs were covalently connected to the peptide via amide, methylenecarbonyl moieties, or a disulfide bridge. The antibacterial and antifungal activities were evaluated under Clinical and Laboratory Standard Institute (CLSI) recommended conditions or in a low-salt brain-heart infusion diluted medium (BHI1/100). Results showed that conjugation of the peptide with the drug increased its antimicrobial activity up to 4-fold. Under CLSI-recommended conditions, all the compounds revealed rather low efficiency. Among conjugates, the highest antibacterial activity was recorded for the CIP-Cys-S-S-HLopt2-NH2 (III). In BHI1/100, which had lower differentiating properties, all of the conjugates revealed low MIC and MMC (minimum inhibitory and microbicidal concentrations) values. The disulfide bridge used as a linker in the most active conjugate (III) upon incubation with S. aureus cells is reduced, releasing constituent peptide and CIP-Cys. In addition, we showed that its fluorescently labeled analogue and constituent peptide are able to be internalized into both C. albicans and S. aureus cells. Moreover, the invaluable advantage of the presented conjugates was their low toxicity to mammalian cells and very low hemolytic activity. The current research can form a solid basis for further in vivo studies and drug development.


Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Immunoconjugates/pharmacology , Lactoferrin/pharmacology , Peptide Fragments/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/toxicity , Antifungal Agents/chemical synthesis , Antifungal Agents/toxicity , Candida albicans/drug effects , Ciprofloxacin/chemical synthesis , Ciprofloxacin/pharmacology , Ciprofloxacin/toxicity , Drug Stability , Escherichia coli/drug effects , Fluconazole/chemical synthesis , Fluconazole/pharmacology , Fluconazole/toxicity , HEK293 Cells , Hep G2 Cells , Humans , Immunoconjugates/toxicity , Lactoferrin/chemical synthesis , Lactoferrin/toxicity , Levofloxacin/chemical synthesis , Levofloxacin/pharmacology , Levofloxacin/toxicity , Male , Microbial Sensitivity Tests , Peptide Fragments/chemical synthesis , Peptide Fragments/toxicity , Staphylococcus aureus/drug effects , Swine
13.
Peptides ; 117: 170079, 2019 07.
Article En | MEDLINE | ID: mdl-30959143

Eight new peptide conjugates composed of modified bovine lactoferricin truncated analogues (LFcinB) and one of the three antimicrobials - ciprofloxacin (CIP), levofloxacin (LVX), and fluconazole (FLC) - were synthesized. Four different linkers were applied to connect a peptide and an antimicrobial agent. The FLC-containing peptidic conjugates were synthesized using the "click chemistry" method. This novel approach is reported here for the first time. Unlike their components, CIP- and LVX-based conjugates exerted activity against Candida yeast. Similarly to the constituent peptides, synthesized conjugates showed activity against Gram-positive bacteria, especially S. epidermidis. The most active were the conjugates containing CIP linked to the peptide by the redox-sensitive disulfide bridge. Our results show a significant role of a linker between antimicrobial agent and a peptide. This was also confirmed by the lack of synergistic effects on the antimicrobial activity of the constituent compounds. Moreover, cytotoxicity assays revealed that the proposed conjugates cause a comparatively low cytotoxic effect in reference to antibiotics widely used in therapies. Therefore, they can be deliberated as attractive leading structures for the development of drugs.


Anti-Infective Agents , Candida/growth & development , Lactoferrin , Peptides , Staphylococcus epidermidis/growth & development , A549 Cells , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Drug Evaluation, Preclinical , HEK293 Cells , HL-60 Cells , Humans , Lactoferrin/chemistry , Lactoferrin/pharmacology , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology
14.
Future Med Chem ; 10(23): 2745-2761, 2018 Dec.
Article En | MEDLINE | ID: mdl-30518272

Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.

15.
Bioconjug Chem ; 29(9): 3060-3071, 2018 09 19.
Article En | MEDLINE | ID: mdl-30048118

Three chimera peptides composed of bovine lactoferrampin and the analogue of truncated human neutrophil peptide 1 were synthesized by the solid-phase method. In two compounds peptide chains were connected via isopeptide bond, whereas in the third one disulfide bridge served as a linker. All three chimeras displayed significantly higher antimicrobial activity than the constituent peptides as well as their equimolar mixtures. The one with a disulfide bridge displayed selectivity toward Gram-positive bacteria and was able to penetrate bacterial cells. The chimeric peptides demonstrated low in vitro mammalian cytotoxicity, especially against benign cells. The significance of linker type was also reflected in the secondary structure and proteolytic stability of studied compounds. Presented results proved that such chimeras are good lead structures for designing antimicrobial drugs.


Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Lactoferrin/chemistry , Peptide Fragments/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , alpha-Defensins/chemistry , Animals , Candida/drug effects , Cattle , Cell Line, Tumor , Circular Dichroism , Drug Screening Assays, Antitumor , Fluorescent Dyes/chemistry , Gram-Positive Bacteria/drug effects , Humans , Microbial Sensitivity Tests , Protein Structure, Secondary , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
16.
Mol Pharm ; 15(8): 3468-3477, 2018 08 06.
Article En | MEDLINE | ID: mdl-29976060

Hydrophilic peptides constitute most of the active peptides. They mostly permeate via tight junctions (paracellular pathway) in the intestine. This permeability mechanism restricts the magnitude of their oral absorption and bioavailability. We hypothesized that concealing the hydrophilic residues of the peptide using the lipophilic prodrug charge masking approach (LPCM) can improve the bioavailability of hydrophilic peptides. To test this hypothesis, a cyclic N-methylated hexapeptide containing Arg-Gly-Asp (RGD) and its prodrug derivatives, masking the Arg and Asp charged side chains, were synthesized. The library was evaluated for intestinal permeability in vitro using the Caco-2 model. Further investigation of metabolic stability ex vivo models in rat plasma, brush border membrane vesicles (BBMVs), and isolated CYP3A4 microsomes and pharmacokinetic studies was performed on a selected peptide and its prodrug (peptide 12). The parent drug analogues were found to have a low permeability rate in vitro, corresponding to atenolol, a marker for paracellular permeability. Moreover, palmitoyl carnitine increased the Papp of peptide 12 by 4-fold, indicating paracellular permeability. The Papp of the prodrug derivatives was much higher than that of their parent peptides. For instance, the Papp of the prodrug 12P was 20-fold higher than the Papp of peptide 12 in the apical to basolateral (AB) direction. Whereas the permeability in the opposite direction (BA of the Caco-2 model) was significantly faster than the Papp AB, indicating the involvement of an efflux system. These results were corroborated when verapamil, a P-gp inhibitor, was added to the Caco-2 model and increased the Papp AB of prodrug 12P by 3-fold. The prodrug 12P was stable in the BBMVs environment, yet degraded quickly (less than 5 min) in the plasma into the parent peptide 12. Pharmacokinetic studies in rats showed an increase in the bioavailability of peptide 12 > 70-fold (from 0.58 ± 0.11% to 43.8 ± 14.9%) after applying the LPCM method to peptide 12 and converting it to the prodrug 12P. To conclude, the LPCM approach converted the absorption mechanism of the polar peptides from a paracellular to transcellular pathway that tremendously affects their oral bioavailability. The LPCM method provides a solution for the poor bioavailability of RGD cyclohexapeptides and paves the way for other active hydrophilic and charged peptides with poor oral bioavailability.


Intestinal Mucosa/metabolism , Peptides, Cyclic/pharmacokinetics , Prodrugs/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Biological Availability , Caco-2 Cells , Cell Membrane Permeability/drug effects , Chemistry, Pharmaceutical , Cyclization , Humans , Hydrophobic and Hydrophilic Interactions , Intestinal Absorption/drug effects , Male , Models, Animal , Peptide Library , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/chemistry , Prodrugs/administration & dosage , Prodrugs/chemistry , Rats , Rats, Wistar
17.
Biopolymers ; 108(6)2017 Nov.
Article En | MEDLINE | ID: mdl-28555756

Matriptase-2 plays a pivotal role in keeping iron concentrations within a narrow physiological range in humans. The opportunity to reduce matriptase-2 proteolytic activity may open a novel possibility to treat iron overload diseases, such as hereditary hemochromatosis and thalassemia. Here, we present 23 new analogues of trypsin inhibitor SFTI-1 designed to inhibit human matriptase-2. Influence of the modifications Gly1Lys, Ile10Arg, and Phe12His, as well as the introduction of Narg in P1 or P1 and P4 positions were examined. Selected peptides were further analyzed, together with previously reported peptides, for their inhibitory activity against related human proteases, that are, matriptase-1, plasmin, thrombin and trypsin. A highly potent inhibitor of matriptase-2, the bicycylic [Arg5 , Arg10 , His12 ]SFTI-1, with a Ki value of 15 nm was obtained.


Drug Design , Helianthus/chemistry , Membrane Proteins/antagonists & inhibitors , Peptides, Cyclic/chemistry , Serine Proteinase Inhibitors/chemical synthesis , Trypsin Inhibitors/chemistry , Amino Acid Sequence , Helianthus/metabolism , Humans , Kinetics , Membrane Proteins/metabolism , Peptides, Cyclic/blood , Protein Stability , Seeds/chemistry , Seeds/metabolism , Sequence Alignment , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Trypsin/chemistry , Trypsin/metabolism
...