Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 123(21): 4599-4608, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31062979

RESUMEN

We have doped helium nanodroplets with C60 and either gold or copper. Positively or negatively charged (C60) mM n± ions (M = Au or Cu) containing up to ≈10 fullerenes and ≈20 metal atoms are formed by electron ionization. The abundance distributions extracted from high-resolution mass spectra reveal several local anomalies. The sizes of the four most stable (C60) mAu n± ions identified in previous calculations for small values of m and n ( m ≤ 2 and n ≤ 2, or m = 1 and n = 3) agree with local maxima in the abundance distributions. Our data suggest the existence of several other relatively stable ions including (C60)2Au3± and (C60)3Au4-. Another feature, namely the absence of bare (C60)2±, confirms the prediction that (C60)2M± dissociates by loss of C60± rather than loss of M. The experimental data also reveal the preference for loss of (charged or neutral) C60 over loss of a metal atom from some larger species such as (C60)3M3+. In contrast to these similarities between Au and Cu, the abundance distributions of (C60)3Au n- and (C60)3Cu n- are markedly different. In this discussion, we emphasize the similarities and differences between anions and cations, and between gold and copper. Also noteworthy is the observation of dianions (C60) mAu n2- for m = 2, 4, and 6.

2.
Phys Chem Chem Phys ; 20(33): 21573-21579, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-30095137

RESUMEN

We report an experimental study of water clusters as guests in interactions with clusters of adamantane (Ad) as hosts that occur in doped helium droplets at extremely low temperatures. Separate experiments with pure water as dopant showed ready formation of a distribution of water clusters (H2O)mH+ that peaks at m = 11 and extends beyond m = 100 with local maxima at m = 4, 11, 21, 28 and 30 with (H2O)21H+ being the most anomalous and showing the greatest stability with respect to clusters immediately adjacent in water content. When adamantane is also added as a dopant, extensive hydration is seen in the formation of water/adamantane clusters, (H2O)mAdn+; magic number clusters (H2O)21Adn+ are seen for all the adamantane clusters. Other magic numbers for water clusters attached to adamantane, (H2O)mAdn+, are as for pristine protonated water, with m = 28 and m = 30. The icosahedral shell closure of pure adamantane at n = 13 and 19 appears to be preserved with (H2O)21 replacing one adamantane. (H2O)21Ad12+ and (H2O)21Ad18+ stand out in intensity and demonstrate the interplay of magic number water clusters with magic number adamantane clusters, observed perhaps for the first time in gas-phase cluster chemistry. There was no clear evidence for the formation of clathrate hydrates in which adamantane is trapped within structured water.

3.
Phys Chem Chem Phys ; 20(14): 9554-9560, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29577136

RESUMEN

Adducts formed between small gold cluster cations and helium atoms are reported for the first time. These binary ions, Aun+Hem, were produced by electron ionization of helium nanodroplets doped with neutral gold clusters and were detected using mass spectrometry. For a given value of n, the distribution of ions as a function of the number of added helium atoms, m, has been recorded. Peaks with anomalously high intensities, corresponding to so-called magic number ions, are identified and interpreted in terms of the geometric structures of the underlying Aun+ ions. These features can be accounted for by planar structures for Aun+ ions with n ≤ 7, with the addition of helium having no significant effect on the structures of the underlying gold cluster ions. According to ion mobility studies and some theoretical predictions, a 3-D structure is expected for Au8+. However, the findings for Au8+ in this work are more consistent with a planar structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...