Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
ACS Omega ; 9(1): 771-780, 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38222595

Hydration of carbon dioxide in water solution is the rate limiting step for the CO2 mineralization process, a process which is at the base of many carbon capture and utilization (CCU) technologies aiming to convert carbon dioxide to added-value products and mitigate climate change. Here, we present a combined experimental and computational study to clarify the effectiveness and molecular mechanism by which nickel nanoparticles, NiNPs, may enhance CO2 hydration in aqueous solutions. Contrary to previous literature, our kinetic experiments recording changes of pHs, conductivity, and dissolved carbon dioxide in solution reveal a minimal effect of the NiNPs in catalyzing CO2 hydration. Our atomistic simulations indicate that the Ni metal surface can coordinate only a limited number of water molecules, leaving uncoordinated metal sites for the binding of carbon dioxide or other cations in solution. This deactivates the catalyst and limits the continuous re-formation of a hydroxyl-decorated surface, which was a key chemical step in the previously suggested Ni-catalyzed hydration mechanism of carbon dioxide in aqueous solutions. At our experimental conditions, which expand the investigation of NiNP applicability toward a wider range of scenarios for CCU, NiNPs show a limited catalytic effect on the rate of CO2 hydration. Our study also highlights the importance of the solvation regime: while Ni surfaces may accelerate carbon dioxide hydration in water restricted environments, it may not be the case in fully hydrated conditions.

2.
J Chem Phys ; 159(23)2023 Dec 21.
Article En | MEDLINE | ID: mdl-38108483

We report state-of-the-art first-principles molecular dynamics results on the heterogeneous chemical uptake of NO2, a major anthropogenic pollutant, on the dry and wet hydroxylated surface of α-quartz, which is a significant component of silica-based catalysts and atmospheric dust aerosols. Our investigation spotlights an unexpected chemical pathway by which NO2 (i) can be adsorbed as HONO by deprotonation of interfacial silanols (i.e., -Si-OH group) on silica, (ii) can be barrierless converted to nitric acid, and (iii) can finally dissociated to surface bounded NO and hydroxyl gas phase radicals. This chemical pathway does not invoke any previously experimentally postulated NO2 dimerization, dimerization that is less likely to occur at low NO2 concentrations. Moreover, water significantly catalyzes the HONO formation and the dissociation of nitric acid into surface-bounded NO and OH radicals, while visible light adsorption can further promote these chemical transformations. This work highlights how water-restricted solvation regimes on common mineral substrates are likely to be a source of reactive oxygen species, and it offers a theoretical framework for further and desirable experimental efforts, aiming to better constrain trace gases/mineral interactions at different relative humidity conditions.

3.
J Phys Chem Lett ; 14(26): 6151-6156, 2023 Jul 06.
Article En | MEDLINE | ID: mdl-37382368

Gas-particle interfaces are chemically active environments. This study investigates the reactivity of SO2 on NaCl surfaces using advanced experimental and theoretical methods with a NH4Cl substrate also examined for cation effects. Results show that NaCl surfaces rapidly convert to Na2SO4 with a new chlorine component when exposed to SO2 under low humidity. In contrast, NH4Cl surfaces have limited SO2 uptake and do not change significantly. Depth profiles reveal transformed layers and elemental ratios at the crystal surfaces. The chlorine species detected originates from Cl- expelled from the NaCl crystal structure, as determined by atomistic density functional theory calculations. Molecular dynamics simulations highlight the chemically active NaCl surface environment, driven by a strong interfacial electric field and the presence of sub-monolayer water coverage. These findings underscore the chemical activity of salt surfaces and the unexpected chemistry that arises from their interaction with interfacial water, even under very dry conditions.

4.
J Am Chem Soc ; 145(11): 6462-6470, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36913682

Due to the adverse health effects and the role in the formation of secondary organic aerosols, hydroxyl radical (OH) generation by atmospheric fine particulate matter (PM) has been of particular research interest in both bulk solutions and the gas phase. However, OH generation by PM at the air-water interface of atmospheric water droplets, a unique environment where reactions can be accelerated by orders of magnitude, has long been overlooked. Using the field-induced droplet ionization mass spectrometry methodology that selectively samples molecules at the air-water interface, here, we show significant oxidation of amphiphilic lipids and isoprene mediated by water-soluble PM2.5 at the air-water interface under ultraviolet A irradiation, with the OH generation rate estimated to be 1.5 × 1016 molecule·s-1·m-2. Atomistic molecular dynamics simulations support the counter-intuitive affinity for the air-water interface of isoprene. We opine that it is the carboxylic chelators of the surface-active molecules in PM that enrich photocatalytic metals such as iron at the air-water interface and greatly enhance the OH generation therein. This work provides a potential new heterogeneous OH generation channel in the atmosphere.

5.
Environ Sci Atmos ; 2(6): 1277-1291, 2022 Nov 10.
Article En | MEDLINE | ID: mdl-36561553

Resorcinol and orcinol are simple members of the family of phenolic compounds present in particulate matter in the atmosphere; they are amphiphilic in nature and thus surface active in aqueous solution. Here, we used X-ray photoelectron spectroscopy to probe the concentration of resorcinol (benzene-1,3-diol) and orcinol (5-methylbenzene-1,3-diol) at the liquid-vapor interface of aqueous solutions. Qualitatively consistent surface propensity and preferential orientation was obtained by molecular dynamics simulations. Auger electron yield near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to probe the hydrogen bonding (HB) structure, indicating that the local structure of water molecules near the surface of the resorcinol and orcinol solutions tends towards a larger fraction of tetrahedrally coordinated molecules than observed at the liquid-vapor interface of pure water. The order parameter obtained from the molecular dynamics simulations confirm these observations. This effect is being discussed in terms of the formation of an ordered structure of these molecules at the surface leading to patterns of hydrated OH groups with distances among them that are relatively close to those in ice. These results suggest that the self-assembly of phenolic species at the aqueous solution-air interface could induce freezing similar to the case of fatty alcohol monolayers and, thus, be of relevance for ice nucleation in the atmosphere. We also attempted at looking at the changes of the O 1b1, 3a2 and 1b2 molecular orbitals of liquid water, which are known to be sensitive to the HB structure as well, in response to the presence of resorcinol and orcinol. However, these changes remained negligible within uncertainty for both experimentally obtained valence spectra and theoretically calculated density of states.

6.
Sci Rep ; 12(1): 21633, 2022 12 14.
Article En | MEDLINE | ID: mdl-36517515

A novel robust preparation method based on thermal salt decomposition has been elaborated for synthesis of halloysite nanotubes (HNTs) impregnated with silver and iron oxide nanoparticles. The developed method is simple, time-effective, and can be employed for large scale material fabrication. Different characterization techniques, including X-ray diffraction (XRD), scanning and transmission electron spectroscopy (SEM and TEM) and energy dispersive X-ray spectroscopy (EDS) have been used to characterize the functionalized HNTs composite materials. Surface elemental and chemical state analysis was conducted using X-ray photoelectron spectrometer (XPS). The functionalized HNTs exhibit enhanced total surface area (by 17.5%) and pore volume (by 11%) compare to the raw HNTs calculated by using the Brunauer-Emmett-Teller (BET) method. It was shown that functionalized HNTs possess high antimicrobial properties towards both gram- positive and gram-negative bacteria species. The enhanced surface area and bactericidal properties of functionalized HNTs could be beneficial for employing of the prepared material as low cost filtration media for water treatment applications. Molecular dynamics (FPMD) were performed to obtain insights about possible physiochemical mechanisms for chemical adsorption and on the HNT thermal stability.


Nanotubes , Clay/chemistry , Nanotubes/chemistry , Silver/chemistry , X-Ray Diffraction , Anti-Bacterial Agents/pharmacology
7.
J Phys Chem Lett ; 13(29): 6681-6682, 2022 Jul 28.
Article En | MEDLINE | ID: mdl-35848768

A Viewpoint regarding our recently published Letter in this Journal (Gladich et al. J. Phys. Chem. Lett. 13, 2994-3001) criticizes some of our conclusions. While a sentence in the abstract and one in the conclusion of the Letter might seem too conclusive, in the body text we objectively discussed experimental results obtained by means of three different surface-/interface-sensitive spectroscopies. Such results were supported by theoretical calculations. The aim of our work was not to criticize past results. On the contrary, we critically discussed our data taking into account those obtained in the past.

8.
J Phys Chem Lett ; 13(13): 2994-3001, 2022 Apr 07.
Article En | MEDLINE | ID: mdl-35344351

Fenton chemistry, involving the reaction between Fe2+ and hydrogen peroxide, is well-known due to its applications in the mineralization of extremely stable molecules. Different mechanisms, influenced by the reaction conditions and the solvation sphere of iron ions, influence the fate of such reactions. Despite the huge amount of effort spent investigating such processes, a complete understanding is still lacking. This work combines photoelectron spectroscopy and theoretical calculations to investigate the solvation and reactivity of Fe2+ and Fe3+ ions in aqueous solutions. The reaction with hydrogen peroxide, both in homogeneous Fenton reagents and at the liquid-vapor interface, illustrates that both ions are homogeneously distributed in solutions and exhibit an asymmetric octahedral coordination to water in the case of Fe2+. No indications of differences in the reaction mechanism between the liquid-vapor interface and the bulk of the solutions have been found, suggesting that Fe3+ and hydroxyl radicals are the only intermediates.

9.
Methods Mol Biol ; 2405: 335-359, 2022.
Article En | MEDLINE | ID: mdl-35298821

Computational peptide design is useful for therapeutics, diagnostics, and vaccine development. To select the most promising peptide candidates, the key is describing accurately the peptide-target interactions at the molecular level. We here review a computational peptide design protocol whose key feature is the use of all-atom explicit solvent molecular dynamics for describing the different peptide-target complexes explored during the optimization. We describe the milestones behind the development of this protocol, which is now implemented in an open-source code called PARCE. We provide a basic tutorial to run the code for an antibody fragment design example. Finally, we describe three additional applications of the method to design peptides for different targets, illustrating the broad scope of the proposed approach.


Molecular Dynamics Simulation , Peptides , Peptides/chemistry , Solvents
10.
Phys Chem Chem Phys ; 24(1): 172-179, 2021 Dec 22.
Article En | MEDLINE | ID: mdl-34878450

We present a first-principles molecular dynamics study on the uptake and hydration of sulfur dioxide on the dry and wet fully hydroxylated surfaces of (0001) α-quartz, which are a proxy for suspended silica dust in the atmosphere. The average adsorption energy for SO2 is about -10 kcal mol-1 on both dry and wet surfaces. The adsorption is driven by hydrogen bond formation between SO2 and the interfacial hydroxyl groups (on dry silica), or with water molecules (in the wet case). In the dry system, we report an additional electrostatic interaction between the interfacial hydroxyl oxygen and the sulfur atom, which further stabilizes the adsorbate. On dry silica, the interfacial hydroxyl group coordinates to SO2 yielding a surface bound bisulfite (Si-SO3H) complex. On the wet surface, SO2 reacts with water forming bisulfite (HSO3-), and the latter remains solvated inside the adsorbed water layer. The hydration barrier for sulfur dioxide is 1 kcal mol-1 and 3 kcal mol-1 on dry and wet silica, respectively, while for the backward reaction (i.e., bisulfite to SO2) the barrier is 6 kcal mol-1 on both surfaces. The modest backward barrier rationalizes earlier experimental findings showing no SO2 uptake on silica. These results underline the importance of the surface hydroxylation and/or adsorbed water layers for the SO2 uptake and its hydration on silica. Moreover, the hydration to bisulfite may prevent direct SO2 photochemistry and be an additional source of sulfate; this is especially relevant in atmospheres subject to a high level of suspended mineral dust, intense solar radiation and atmospheric oxidizers.

11.
Science ; 374(6568): 747-752, 2021 Nov 05.
Article En | MEDLINE | ID: mdl-34735230

A surface-promoted sulfate-reducing ammonium oxidation reaction was discovered to spontaneously take place on common inorganic aerosol surfaces undergoing solvation. Several key intermediate species­including elemental sulfur (S0), bisulfide (HS−), nitrous acid (HONO), and aqueous ammonia [NH3(aq)]­were identified as reaction components associated with the solvation process. Depth profiles of relative species abundance showed the surface propensity of key species. The species assignments and depth profile features were supported by classical and first-principles molecular dynamics calculations, and a detailed mechanism was proposed to describe the processes that led to unexpected products during salt solvation. This discovery revealed chemistry that is distinctly linked to a solvating surface and has great potential to illuminate current puzzles within heterogeneous chemistry.

12.
J Phys Chem B ; 125(18): 4890-4897, 2021 05 13.
Article En | MEDLINE | ID: mdl-33885318

The need to chemically convert CO2 at the interface of aqueous amine solutions has become particularly relevant for the development and the broad distribution of cost-effective and near-future devices for direct air capture working at low (e.g., ambient) partial pressure. Here, we have determined the stability of a CO2-monoethanolamine zwitterion and its chemical conversion into carbamate at the vapor/liquid water interface by first-principles molecular dynamics simulations coupled with a recently introduced enhanced sampling technique. Contrary to the bulk water case, our results show that both the zwitterion and carbamate ions are poorly stable at the vapor/amine aqueous interface, further stating the differences between the homogeneous and heterogeneous CO2 chemical conversion. The design of novel and cost-effective capture systems, such as those offered by amine-based scrubbing solutions, working at low (e.g., ambient) CO2 partial pressure should explore the use of novel solvents, different from aqueous mixtures, to overcome the limits of the current absorbents.

13.
J Phys Chem B ; 124(45): 10245-10256, 2020 Nov 12.
Article En | MEDLINE | ID: mdl-33140965

Carbon dioxide scrubbing by aqueous amine solution is considered as a promising technology for post-combustion CO2 capture, while mitigating climate change. The lack of physicochemical details for this process, especially at the interface between the gas and the condensed phase, limits our capability in designing novel and more cost-effective scrubbing systems. Here, we present classical and first-principles molecular dynamics results on CO2 capture at the gas/amine solution interfaces using solvents of different polarities. Even if it is apolar, carbon dioxide is absorbed at the gas/monoethanolamine (MEA) aqueous solution interface, forming stable and interfacial [CO2·MEA] complexes, which are the first reaction intermediate toward the chemical conversion of CO2 to carbamate ions. We report that the stability of the interfacial [CO2·MEA] precomplex depends on the nature and polarity of the solution, as well as on the conformer population of MEA. By changing the polarity of the solvent, using chloroform, we observed a shift in the interfacial MEA population toward conformers that form more stable [CO2·MEA] complexes and, at the same time, a further stabilization of the complex induced by the solvent environment. Thus, while lowering the polarity of the solvent could decrease the solubility of MEA, at the same time, it favors conformers that are more prone to CO2 capture and mineralization. The results presented here offer a theoretical framework that helps in designing novel and more cost-effective solvents for CO2 scrubbing systems, while shedding further light on the intrinsic reaction mechanisms of interfacial environments in general.

14.
J Chem Phys ; 152(16): 164702, 2020 Apr 30.
Article En | MEDLINE | ID: mdl-32357765

We present results from molecular dynamics simulations coupled with enhanced sampling techniques on the adsorption and isomerization of glyoxal (GL) and methylglyoxal (MG) at the air/hydroxylated silica (α-Quartz) interface. GL and MG are two organic compounds present in the atmosphere as oxidation products of both biogenic and anthropogenic precursors. By adsorption and hydration on liquid droplets or wetted dust particles, they can enable aerosol growth in the atmosphere. Moreover, thanks to the different polar characters of their trans and cis conformers, GL and MG have been suggested as possible molecular switches capable of responding to changes in solvent polarity. Here, we show that the hydroxylated silica surface does not significantly catalyze the trans-to-cis isomerization, but it stabilizes the cis-isomers, indicating a higher interfacial cis/trans relative concentration compared to the gas phase. Moreover, adsorbed GL prefers to lie parallel on the silica surface, while adsorbed MG shows a tilted orientation. In particular, we report the aldehyde group pointing upward (downward) to the gas phase (to the silica surface) in trans-MG (cis-MG). These results will help in the rationalization of upcoming experimental and modeling work on the adsorption of ketonic compounds on dust aerosols, while it clarifies the catalytic role of the solid substrate surface in promoting conformational changes.

15.
J Phys Chem Lett ; 11(9): 3422-3429, 2020 May 07.
Article En | MEDLINE | ID: mdl-32283032

Multiphase reactions of halide ions in aqueous solutions exposed to the atmosphere initiate the formation of molecular halogen compounds in the gas phase. Their photolysis leads to halogen atoms, which are catalytic sinks for ozone, making these processes relevant for the regional and global tropospheric ozone budget. The affinity of halide ions in aqueous solution for the liquid-gas interface, which may influence their reactivity with gaseous species, has been debated. Our study focuses on the surface properties of the bromide ion and its oxidation products. In situ X-ray photoelectron spectroscopy carried out on a liquid jet combined with classical and first-principles molecular dynamics calculations was used to investigate the interfacial depth profile of bromide, hypobromite, hypobromous acid, and bromate. The simulated core electron binding energies support the experimentally observed values, which follow a correlation with bromine oxidation state for the anion series. Bromide ions are homogeneously distributed in the solution. Hypobromous acid, a key species in the multiphase cycling of bromine, is the only species showing surface propensity, which suggests a more important role of the interface in multiphase bromine chemistry than thought so far.

16.
J Am Chem Soc ; 142(12): 5574-5582, 2020 03 25.
Article En | MEDLINE | ID: mdl-32091211

Aqueous-phase processing of methylglyoxal (MG) has been suggested to play a key role in the formation of secondary organic aerosols and catalyze particle growth in the atmosphere. However, the details of these processes remain speculative owing to the lack of a complete description of the physicochemical behavior of MG on atmospheric aerosols. Here, the solvation and hydrolysis of MG at the air/liquid water interface is studied via classical and first-principles molecular dynamics simulations combined with free-energy methods. Our results reveal that the polarity of the water solvent catalyzed the trans-to-cis isomerization of MG at the air/liquid water interface relative to the gas phase. Despite the presence of a hydrophobic group, MG often solvates with both the ketone and methyl groups parallel to the water interface. Analysis of the instantaneous water surface reveals that when MG is in the trans state, the methyl group repels interfacial water to maintain the planarity of the molecule, indicating that lateral and temporal inhomogeneities of interfacial environments are important for fully characterizing the solvation of MG. The counterintuitive behavior of the hydrophobic group is ascribed to a tendency to maximize the number of hydrogen bonds between MG and interfacial water while minimizing the torsional free energy. This drives MG hydration, and our simulations indicate that the formation of MG diol is catalyzed at the air/liquid water interface compared to the gas phase and occurs through nucleophilic attack of water on the carbonyl carbon.

17.
J Am Chem Soc ; 140(16): 5535-5543, 2018 04 25.
Article En | MEDLINE | ID: mdl-29619831

Conformational isomerism plays a central role in organic synthesis and biological processes; however, effective control of isomerization processes still remains challenging and elusive. Here, we propose a novel paradigm for conformational control of isomerization in the condensed phase, in which the polarity of the solvent determines the relative concentration of conformers at the interfacial and bulk regions. By the use of state-of-the-art molecular dynamics simulations of glyoxal in different solvents, we demonstrate that the isomerization process is dipole driven: the solvent favors conformational changes toward conformers having molecular dipoles that better match its polar character. Thus, the solvent polarity modulates the conformational change, stabilizing and selectively segregating in the bulk vs the interface one conformer with respect to the others. The findings in this paper have broader implications affecting systems involving compounds with conformers of different polarity. This work suggests novel mechanisms for tuning the catalytic activity of surfaces in conformationally controlled (photo)chemical reactions and for designing a new class of molecular switches that are active in different solvent environments.

18.
Biosens Bioelectron ; 100: 298-303, 2018 Feb 15.
Article En | MEDLINE | ID: mdl-28942212

One of the main targets in current clinical oncology is the development of a cheap device capable of monitoring in real-time the concentration of a drug in the blood of a patient. This would allow fine-tuning the dosage according to the patient's metabolism, a key condition to reduce side effects. By using surface plasmon resonance and fluorescence spectroscopy we here show that short peptides designed in silico by a recently developed algorithm are capable of binding the anticancer drug irinotecan (CPT-11) with micromolar affinity. Importantly, the recognition takes place in the denaturating solution used in standard therapeutic drug monitoring to detach the drug from the proteins that are present in human plasma, and some of the peptides are capable of distinguishing CPT-11 from its metabolite SN-38. These results suggest that the in silico design of small artificial peptides is now a viable route for designing sensing units, opening a wide range of applications in diagnostic and clinical areas.


Antineoplastic Agents/metabolism , Camptothecin/analogs & derivatives , Drug Monitoring/methods , Peptides/metabolism , Surface Plasmon Resonance/methods , Amino Acid Sequence , Antineoplastic Agents/blood , Binding Sites , Camptothecin/blood , Camptothecin/metabolism , Humans , Irinotecan , Models, Molecular , Peptides/chemistry , Protein Binding , Spectrometry, Fluorescence
19.
Nat Commun ; 8(1): 700, 2017 09 26.
Article En | MEDLINE | ID: mdl-28951540

Oxidation of bromide in aqueous environments initiates the formation of molecular halogen compounds, which is important for the global tropospheric ozone budget. In the aqueous bulk, oxidation of bromide by ozone involves a [Br•OOO-] complex as intermediate. Here we report liquid jet X-ray photoelectron spectroscopy measurements that provide direct experimental evidence for the ozonide and establish its propensity for the solution-vapour interface. Theoretical calculations support these findings, showing that water stabilizes the ozonide and lowers the energy of the transition state at neutral pH. Kinetic experiments confirm the dominance of the heterogeneous oxidation route established by this precursor at low, atmospherically relevant ozone concentrations. Taken together, our results provide a strong case of different reaction kinetics and mechanisms of reactions occurring at the aqueous phase-vapour interface compared with the bulk aqueous phase.Heterogeneous oxidation of bromide in atmospheric aqueous environments has long been suspected to be accelerated at the interface between aqueous solution and air. Here, the authors provide spectroscopic, kinetic and theoretical evidence for a rate limiting, surface active ozonide formed at the interface.

20.
J Am Chem Soc ; 139(1): 27-30, 2017 01 11.
Article En | MEDLINE | ID: mdl-28073251

Interfacial chemistry involving glyoxal at aerosol surfaces is postulated to catalyze aerosol growth. This chemistry remains speculative due to a lack of detailed information concerning the physicochemical behavior of glyoxal at the interface of atmospheric aerosols. Here, we report results from high-level electronic structure calculations as well as both classical and Born-Oppenheimer ab initio molecular dynamics simulations of glyoxal solvation at the air/liquid water interface. When compared to the gas phase, the trans to cis isomerization of glyoxal at the liquid water interface is found to be catalyzed; additionally, the trans conformation is selectively solvated within the bulk to a greater degree than is the cis conformation. These two processes, i.e., the catalytic effect at the water interface and the differentially selective solvation, act to enhance the concentration of the cis isomer of glyoxal at the water interface. This has important consequences for the interpretation of experiments and for the modeling of glyoxal chemistry both at the interface of water clouds and at aerosols. Broader implications of this work relate to describing the role of interfaces in selecting specific stereo molecular structures at interfacial environments.

...