Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0295103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38574162

RESUMEN

The ADP-ribosylation factors (Arfs) constitute a family of small GTPases within the Ras superfamily, with a distinguishing structural feature of a hypervariable N-terminal extension of the G domain modified with myristate. Arf proteins, including Arf1, have roles in membrane trafficking and cytoskeletal dynamics. While screening for Arf1:small molecule co-crystals, we serendipitously solved the crystal structure of the non-myristoylated engineered mutation [L8K]Arf1 in complex with a GDP analogue. Like wild-type (WT) non-myristoylated Arf1•GDP, we observed that [L8K]Arf1 exhibited an N-terminal helix that occludes the hydrophobic cavity that is occupied by the myristoyl group in the GDP-bound state of the native protein. However, the helices were offset from one another due to the L8K mutation, with a significant change in position of the hinge region connecting the N-terminus to the G domain. Hypothesizing that the observed effects on behavior of the N-terminus affects interaction with regulatory proteins, we mutated two hydrophobic residues to examine the role of the N-terminal extension for interaction with guanine nucleotide exchange factors (GEFs) and GTPase Activating Proteins (GAPs. Different than previous studies, all mutations were examined in the context of myristoylated Arf. Mutations had little or no effect on spontaneous or GEF-catalyzed guanine nucleotide exchange but did affect interaction with GAPs. [F13A]myrArf1 was less than 1/2500, 1/1500, and 1/200 efficient as substrate for the GAPs ASAP1, ARAP1 and AGAP1; however, [L8A/F13A]myrArf1 was similar to WT myrArf1. Using molecular dynamics simulations, the effect of the mutations on forming alpha helices adjacent to a membrane surface was examined, yet no differences were detected. The results indicate that lipid modifications of GTPases and consequent anchoring to a membrane influences protein function beyond simple membrane localization. Hypothetical mechanisms are discussed.


Asunto(s)
Proteínas Activadoras de GTPasa , Miristatos , Proteínas Activadoras de GTPasa/metabolismo , Mutación Puntual , Ácido Mirístico , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
2.
Biochemistry ; 62(5): 1012-1025, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36820504

RESUMEN

The MID1 TRIM protein is important for ventral midline development in vertebrates, and mutations of its B-box1 domain result in several birth defects. The B-box1 domain of the human MID1 protein binds two zinc atoms and adopt a similar ßßα-RING structure. This domain is required for the efficient ubiquitination of protein phosphatase 2A, alpha4, and fused kinase. Considering the structural similarity, the MID1 B-box1 domain exhibits mono-autoubiquitination activity, in contrast to poly-autoubiquitination observed for RING E3 ligases. To understand its mechanism of action, the interaction of the B-box1 domain with Ube2D1 (UbcH5a, E2), a preferred E2 ligase, is investigated. Using isothermal titration calorimetry, the MID1 RING and B-box1 domains were observed to have similar binding affinities with the Ube2D1 protein. However, NMR 15N-1H Heteronuclear Single Quantum Coherence titration, 15N relaxation data, and High Ambiguity Driven protein-protein DOCKing (HADDOCK) calculations show the B-box1 domain binding on a surface distinct from where RING domains bind. The novel binding interaction shows the B-box1 domain partially overlapping the noncovalent Ube2D1 and a ubiquitin binding site that is necessary for poly-autoubiquitination activity. The B-box1 domain also displaces the ubiquitin from the Ube2D1 protein. These studies reveal a novel binding interaction between the zinc-binding ßßα-fold B-box1 domain and the Ube2D enzyme family and that this difference in binding, compared to RING E3 ligases, provides a rationale for its auto-monoubiquitination E3 ligase activity.


Asunto(s)
Proteínas de Microtúbulos , Factores de Transcripción , Enzimas Ubiquitina-Conjugadoras , Ubiquitina-Proteína Ligasas , Humanos , Secuencia de Aminoácidos , Proteínas de Microtúbulos/química , Modelos Moleculares , Estructura Terciaria de Proteína , Factores de Transcripción/química , Ubiquitina/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/química , Ubiquitinación , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...