Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 142
1.
Acta Neuropathol ; 147(1): 29, 2024 Feb 03.
Article En | MEDLINE | ID: mdl-38308693

The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases. We found that several cryptic RNAs are robustly expressed in LATE-NC cases with or without comorbid ADNC and correlate with pTDP-43 abundance; however, the accumulation of cryptic RNAs is more robust in LATE-NC with comorbid ADNC. Additionally, cryptic RNAs can robustly distinguish LATE-NC from healthy controls and AD cases. These findings expand our current understanding and provide novel potential biomarkers for LATE pathogenesis.


Alzheimer Disease , Dementia , TDP-43 Proteinopathies , Humans , Brain/pathology , TDP-43 Proteinopathies/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Aging/genetics , Aging/pathology , DNA-Binding Proteins/metabolism , Exons
2.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Article En | MEDLINE | ID: mdl-38277467

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Peptides , Proteomics
4.
Article En | MEDLINE | ID: mdl-38141002

Lion's Mane (Hericium erinaceus) has historically been used as traditional medicine in Asia and Europe for its potential benefits in fighting infection and cancer. It has gained interest in the neurodegenerative disease field because of its mechanisms of action; these include anti-inflammation, neuroprotection, and promoting neurite growth demonstrated in various cell and animal models. A very small, double-blind, placebo-controlled trial in patients with mild cognitive impairment showed a temporary improvement in cognitive function; this finding has yet to be replicated. However, there have been no studies in ALS cell or animal models or in humans with ALS. Lion's Mane appears safe and inexpensive when consumed in powder or capsule, but one anaphylactic case was reported after a patient consumed fresh Lion's Mane mushroom. Currently, we do not have enough information to support the use of Lion's Mane for treating ALS. We support further research in ALS disease models and clinical trials to study its efficacy.


Agaricales , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Humans , Europe
5.
Acta Neuropathol Commun ; 11(1): 202, 2023 Dec 18.
Article En | MEDLINE | ID: mdl-38110981

Machine learning (ML) has increasingly been used to assist and expand current practices in neuropathology. However, generating large imaging datasets with quality labels is challenging in fields which demand high levels of expertise. Further complicating matters is the often seen disagreement between experts in neuropathology-related tasks, both at the case level and at a more granular level. Neurofibrillary tangles (NFTs) are a hallmark pathological feature of Alzheimer disease, and are associated with disease progression which warrants further investigation and granular quantification at a scale not currently accessible in routine human assessment. In this work, we first provide a baseline of annotator/rater agreement for the tasks of Braak NFT staging between experts and NFT detection using both experts and novices in neuropathology. We use a whole-slide-image (WSI) cohort of neuropathology cases from Emory University Hospital immunohistochemically stained for Tau. We develop a workflow for gathering annotations of the early stage formation of NFTs (Pre-NFTs) and mature intracellular (iNFTs) and show ML models can be trained to learn annotator nuances for the task of NFT detection in WSIs. We utilize a model-assisted-labeling approach and demonstrate ML models can be used to aid in labeling large datasets efficiently. We also show these models can be used to extract case-level features, which predict Braak NFT stages comparable to expert human raters, and do so at scale. This study provides a generalizable workflow for various pathology and related fields, and also provides a technique for accomplishing a high-level neuropathology task with limited human annotations.


Alzheimer Disease , Neurodegenerative Diseases , Humans , Neurofibrillary Tangles/pathology , Neurodegenerative Diseases/pathology , tau Proteins/metabolism , Workflow , Brain/pathology , Alzheimer Disease/pathology , Machine Learning
6.
Brain ; 146(9): 3760-3769, 2023 09 01.
Article En | MEDLINE | ID: mdl-37043475

With the advent of gene therapies for amyotrophic lateral sclerosis (ALS), there is a surge in gene testing for this disease. Although there is ample experience with gene testing for C9orf72, SOD1, FUS and TARDBP in familial ALS, large studies exploring genetic variation in all ALS-associated genes in sporadic ALS (sALS) are still scarce. Gene testing in a diagnostic setting is challenging, given the complex genetic architecture of sALS, for which there are genetic variants with large and small effect sizes. Guidelines for the interpretation of genetic variants in gene panels and for counselling of patients are lacking. We aimed to provide a thorough characterization of genetic variability in ALS genes by applying the American College of Medical Genetics and Genomics (ACMG) criteria on whole genome sequencing data from a large cohort of 6013 sporadic ALS patients and 2411 matched controls from Project MinE. We studied genetic variation in 90 ALS-associated genes and applied customized ACMG-criteria to identify pathogenic and likely pathogenic variants. Variants of unknown significance were collected as well. In addition, we determined the length of repeat expansions in C9orf72, ATXN1, ATXN2 and NIPA1 using the ExpansionHunter tool. We found C9orf72 repeat expansions in 5.21% of sALS patients. In 50 ALS-associated genes, we did not identify any pathogenic or likely pathogenic variants. In 5.89%, a pathogenic or likely pathogenic variant was found, most commonly in SOD1, TARDBP, FUS, NEK1, OPTN or TBK1. Significantly more cases carried at least one pathogenic or likely pathogenic variant compared to controls (odds ratio 1.75; P-value 1.64 × 10-5). Isolated risk factors in ATXN1, ATXN2, NIPA1 and/or UNC13A were detected in 17.33% of cases. In 71.83%, we did not find any genetic clues. A combination of variants was found in 2.88%. This study provides an inventory of pathogenic and likely pathogenic genetic variation in a large cohort of sALS patients. Overall, we identified pathogenic and likely pathogenic variants in 11.13% of ALS patients in 38 known ALS genes. In line with the oligogenic hypothesis, we found significantly more combinations of variants in cases compared to controls. Many variants of unknown significance may contribute to ALS risk, but diagnostic algorithms to reliably identify and weigh them are lacking. This work can serve as a resource for counselling and for the assembly of gene panels for ALS. Further characterization of the genetic architecture of sALS is necessary given the growing interest in gene testing in ALS.


Amyotrophic Lateral Sclerosis , Humans , United States , Amyotrophic Lateral Sclerosis/genetics , Genetic Predisposition to Disease/genetics , C9orf72 Protein/genetics , Superoxide Dismutase-1/genetics
7.
Front Cell Neurosci ; 17: 1112405, 2023.
Article En | MEDLINE | ID: mdl-36937187

Introduction: Caveolin-1 and Caveolin-2 (CAV1 and CAV2) are proteins associated with intercellular neurotrophic signalling. There is converging evidence that CAV1 and CAV2 (CAV1/2) genes have a role in amyotrophic lateral sclerosis (ALS). Disease-associated variants have been identified within CAV1/2 enhancers, which reduce gene expression and lead to disruption of membrane lipid rafts. Methods: Using large ALS whole-genome sequencing and post-mortem RNA sequencing datasets (5,987 and 365 tissue samples, respectively), and iPSC-derived motor neurons from 55 individuals, we investigated the role of CAV1/2 expression and enhancer variants in the ALS phenotype. Results: We report a differential expression analysis between ALS cases and controls for CAV1 and CAV2 genes across various post-mortem brain tissues and three independent datasets. CAV1 and CAV2 expression was consistently higher in ALS patients compared to controls, with significant results across the primary motor cortex, lateral motor cortex, and cerebellum. We also identify increased survival among carriers of CAV1/2 enhancer mutations compared to non-carriers within Project MinE and slower progression as measured by the ALSFRS. Carriers showed a median increase in survival of 345 days. Discussion: These results add to an increasing body of evidence linking CAV1 and CAV2 genes to ALS. We propose that carriers of CAV1/2 enhancer mutations may be conceptualised as an ALS subtype who present a less severe ALS phenotype with a longer survival duration and slower progression. Upregulation of CAV1/2 genes in ALS cases may indicate a causal pathway or a compensatory mechanism. Given prior research supporting the beneficial role of CAV1/2 expression in ALS patients, we consider a compensatory mechanism to better fit the available evidence, although further investigation into the biological pathways associated with CAV1/2 is needed to support this conclusion.

8.
bioRxiv ; 2023 Jan 23.
Article En | MEDLINE | ID: mdl-36747793

Functional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of de novo protein synthesis from cryptic exon transcripts has not been explored. Here, we show that mRNA transcripts harboring cryptic exons generate de novo proteins both in TDP-43 deficient cellular models and in disease. Using coordinated transcriptomic and proteomic studies of TDP-43 depleted iPSC-derived neurons, we identified numerous peptides that mapped to cryptic exons. Cryptic exons identified in iPSC models were highly predictive of cryptic exons expressed in brains of patients with TDP-43 proteinopathy, including cryptic transcripts that generated de novo proteins. We discovered that inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Finally, we showed that these de novo peptides were present in CSF from patients with ALS. The demonstration of cryptic exon translation suggests new mechanisms for ALS pathophysiology downstream of TDP-43 dysfunction and may provide a strategy for novel biomarker development.

9.
bioRxiv ; 2023 Jan 13.
Article En | MEDLINE | ID: mdl-36711601

Repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and familial frontotemporal dementia (ALS/FTD). To identify molecular defects that take place in the dorsolateral frontal cortex of patients with C9orf72 ALS/FTD, we compared healthy controls with C9orf72 ALS/FTD donor samples staged based on the levels of cortical phosphorylated TAR DNA binding protein (pTDP-43), a neuropathological hallmark of disease progression. We identified distinct molecular changes in different cell types that take place during disease progression. These alterations include downregulation of nuclear and mitochondrial ribosomal protein genes in early disease stages that become upregulated as the disease progresses. High ratios of premature oligodendrocytes expressing low levels of genes encoding major myelin protein components are characteristic of late disease stages and may represent a unique signature of C9orf72 ALS/FTD. Microglia with increased reactivity and astrocyte specific transcriptome changes in genes involved in glucose/glycogen metabolism are also associated with disease progression. Late stages of C9orf72 ALS/FTD correlate with sequential changes in the regulatory landscape of several genes in glial cells, namely MBP/MAG/MOG in oligodendrocytes, CD83/IRF8 in microglia, and GLUT1/GYS2/AGL in astrocytes. Only layer 2-3 cortical projection neurons with high expression of CUX2/LAMP5 are significantly reduced in C9orf72 ALS/FTD patients with respect to controls. Our findings reveal previously unknown progressive functional changes in cortical cells of C9orf72 ALS/FTD patients that shed light on the mechanisms underlying the pathology of this disease.

10.
Article En | MEDLINE | ID: mdl-36476010

OBJECTIVE: To investigate clinically meaningful change for ROADS and ALSFRS-R using a patient-defined approach. METHODS: Data were reviewed from participants assessed at the Emory ALS Center from 2019-2022 with two assessments using both ROADS and ALSFRS-R and a completed patient-reported global impression of change scale at the second visit. Minimal important difference (MID), or the smallest amount of change that is clinically relevant, was assessed based on patient reported impression of change for ROADS and ALSFRS-R. Minimal detectable change (MDC), the smallest amount of change exceeding the threshold for measurement error, was assessed for ROADS and ALSFRS-R using standard deviations for participants self-rated as "unchanged". RESULTS: Data were included from 162 participants. For ROADS (total possible normed score = 146), MID = 5.81 and MDC = 2.83 points. For ALSFRS-R (total possible sum-score = 48), MID = 3.24 and MDC = 1.59 points. Clinically meaningful decline during the assessment period was observed in 98/162 (60.49%) participants on ROADS and 75/162 (46.30) participants on ALSFRS-R (OR = 1.63, 95% CI [1.0009, 2.66]). CONCLUSIONS: Changes that are on average less than 5.81 points (3.98%) on the normed ROADS score or less than 3.24 points (6.75%) on the ALSFRS-R sum-score may not be clinically meaningful according to a patient-defined approach. Understanding the clinical and statistical limitations of these scales is crucial when designing and interpreting ALS research studies.


Amyotrophic Lateral Sclerosis , Disabled Persons , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Surveys and Questionnaires , Disability Evaluation , Disease Progression
11.
Metabolites ; 12(11)2022 Nov 10.
Article En | MEDLINE | ID: mdl-36355179

Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal neurodegenerative disease characterized by progressive loss of motor function with an average survival time of 2-5 years after diagnosis. Due to the lack of signature biomarkers and heterogenous disease phenotypes, a definitive diagnosis of ALS can be challenging. Comprehensive investigation of this disease is imperative to discovering unique features to expedite the diagnostic process and improve diagnostic accuracy. Here, we present untargeted metabolomics by mass spectrometry imaging (MSI) for comparing sporadic ALS (sALS) and C9orf72 positive (C9Pos) post-mortem frontal cortex human brain tissues against a control cohort. The spatial distribution and relative abundance of metabolites were measured by infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI for association to biological pathways. Proteomic studies on the same patients were completed via LC-MS/MS in a previous study, and results were integrated with imaging metabolomics results to enhance the breadth of molecular coverage. Utilizing METASPACE annotation platform and MSiPeakfinder, nearly 300 metabolites were identified across the sixteen samples, where 25 were identified as dysregulated between disease cohorts. The dysregulated metabolites were further examined for their relevance to alanine, aspartate, and glutamate metabolism, glutathione metabolism, and arginine and proline metabolism. The dysregulated pathways discussed are consistent with reports from other ALS studies. To our knowledge, this work is the first of its kind, reporting on the investigation of ALS post-mortem human brain tissue analyzed by multiomic MSI.

12.
Nat Commun ; 13(1): 6901, 2022 11 12.
Article En | MEDLINE | ID: mdl-36371497

Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability.


Amyotrophic Lateral Sclerosis , Humans , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/epidemiology , Superoxide Dismutase/genetics , Phenotype , Mutation
13.
JAMA Neurol ; 79(12): 1312-1318, 2022 12 01.
Article En | MEDLINE | ID: mdl-36251310

Importance: Clinical trial activity in amyotrophic lateral sclerosis (ALS) is dramatically increasing; as a result, trial modifications have been introduced to improve efficiency, outcome measures have been reassessed, and considerable discussion about the level of data necessary to advance a drug to approval has occurred. This review discusses what recent pivotal studies can teach the community about these topics. Observations: By restricting inclusion and exclusion criteria, recent trials have enrolled populations distinct from previous studies. This has led to efficacy signals being observed in studies that are smaller and shorter than was thought feasible previously. However, such trials raise questions about generalizability of results. Small trials with equivocal clinical results also raise questions about the data necessary to lead to regulatory approval. The ALS Functional Rating Scale-Revised remains the most commonly used primary outcome measure; this review discusses innovations in its use. Blood neurofilament levels can predict prognosis in ALS and may be a sensitive indicator of biologic effect; current knowledge does not yet support its use as a primary outcome. Conclusions and Relevance: It is now possible to use specific inclusion criteria to recruit a homogeneous patient population progressing at a specific rate; this will likely impact trials in the future. Generalizability of results on limited populations remains a concern. Although clinical outcomes remain the most appropriate primary outcome measures, fluid markers reflecting biologically important processes will assume more importance as more is learned about the association between such markers and clinical end points. The benefit of use of analytic strategies, such as responder analyses, is still uncertain.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/drug therapy , Outcome Assessment, Health Care , Biomarkers , Prognosis
14.
N Engl J Med ; 387(12): 1099-1110, 2022 09 22.
Article En | MEDLINE | ID: mdl-36129998

BACKGROUND: The intrathecally administered antisense oligonucleotide tofersen reduces synthesis of the superoxide dismutase 1 (SOD1) protein and is being studied in patients with amyotrophic lateral sclerosis (ALS) associated with mutations in SOD1 (SOD1 ALS). METHODS: In this phase 3 trial, we randomly assigned adults with SOD1 ALS in a 2:1 ratio to receive eight doses of tofersen (100 mg) or placebo over a period of 24 weeks. The primary end point was the change from baseline to week 28 in the total score on the ALS Functional Rating Scale-Revised (ALSFRS-R; range, 0 to 48, with higher scores indicating better function) among participants predicted to have faster-progressing disease. Secondary end points included changes in the total concentration of SOD1 protein in cerebrospinal fluid (CSF), in the concentration of neurofilament light chains in plasma, in slow vital capacity, and in handheld dynamometry in 16 muscles. A combined analysis of the randomized component of the trial and its open-label extension at 52 weeks compared the results in participants who started tofersen at trial entry (early-start cohort) with those in participants who switched from placebo to the drug at week 28 (delayed-start cohort). RESULTS: A total of 72 participants received tofersen (39 predicted to have faster progression), and 36 received placebo (21 predicted to have faster progression). Tofersen led to greater reductions in concentrations of SOD1 in CSF and of neurofilament light chains in plasma than placebo. In the faster-progression subgroup (primary analysis), the change to week 28 in the ALSFRS-R score was -6.98 with tofersen and -8.14 with placebo (difference, 1.2 points; 95% confidence interval [CI], -3.2 to 5.5; P = 0.97). Results for secondary clinical end points did not differ significantly between the two groups. A total of 95 participants (88%) entered the open-label extension. At 52 weeks, the change in the ALSFRS-R score was -6.0 in the early-start cohort and -9.5 in the delayed-start cohort (difference, 3.5 points; 95% CI, 0.4 to 6.7); non-multiplicity-adjusted differences favoring early-start tofersen were seen for other end points. Lumbar puncture-related adverse events were common. Neurologic serious adverse events occurred in 7% of tofersen recipients. CONCLUSIONS: In persons with SOD1 ALS, tofersen reduced concentrations of SOD1 in CSF and of neurofilament light chains in plasma over 28 weeks but did not improve clinical end points and was associated with adverse events. The potential effects of earlier as compared with delayed initiation of tofersen are being further evaluated in the extension phase. (Funded by Biogen; VALOR and OLE ClinicalTrials.gov numbers, NCT02623699 and NCT03070119; EudraCT numbers, 2015-004098-33 and 2016-003225-41.).


Amyotrophic Lateral Sclerosis , Oligonucleotides, Antisense , Superoxide Dismutase-1 , Adult , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Double-Blind Method , Humans , Injections, Spinal , Neurofilament Proteins/blood , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Recovery of Function/drug effects , Superoxide Dismutase-1/cerebrospinal fluid , Superoxide Dismutase-1/genetics
15.
Mov Disord ; 37(10): 2110-2121, 2022 10.
Article En | MEDLINE | ID: mdl-35997131

BACKGROUND: Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. OBJECTIVE: Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied only autopsy-confirmed cases. METHODS: We studied common genetic variations in Multiple System Atrophy cases (N = 731) and controls (N = 2898). RESULTS: The most strongly disease-associated markers were rs16859966 on chromosome 3, rs7013955 on chromosome 8, and rs116607983 on chromosome 4 with P-values below 5 × 10-6 , all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). INTERPRETATION: Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4-immunoreactive neurons were significantly reduced inpatients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Multiple System Atrophy , Olivopontocerebellar Atrophies , Striatonigral Degeneration , Autoantibodies , Autopsy , Genome-Wide Association Study , Humans , Multiple System Atrophy/genetics , Multiple System Atrophy/pathology , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , alpha-Synuclein/metabolism
16.
EMBO Rep ; 23(8): e54234, 2022 08 03.
Article En | MEDLINE | ID: mdl-35735139

Mutations in the human kinesin family member 5A (KIF5A) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and are predicted to produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. Here, we confirm the expression of KIF5A mutant proteins in patient iPSC-derived motor neurons. We perform a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis, and premature death. Our results suggest gain-of-function as an underlying disease mechanism in KIF5A-associated ALS.


Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA, Antisense/genetics , Drosophila melanogaster , Gain of Function Mutation , Humans , Kinesins/genetics , Motor Neurons/metabolism , Mutation , Transcription Factor 7-Like 2 Protein/metabolism
17.
Brain ; 145(8): 2671-2676, 2022 08 27.
Article En | MEDLINE | ID: mdl-35521889

Intermediate CAG (polyQ) expansions in the gene ataxin-2 (ATXN2) are now recognized as a risk factor for amyotrophic lateral sclerosis. The threshold for increased risk is not yet firmly established, with reports ranging from 27 to 31 repeats. We investigated the presence of ATXN2 polyQ expansions in 9268 DNA samples collected from people with amyotrophic lateral sclerosis, amyotrophic lateral sclerosis with frontotemporal dementia, frontotemporal dementia alone, Lewy body dementia and age matched controls. This analysis confirmed ATXN2 intermediate polyQ expansions of ≥31 as a risk factor for amyotrophic lateral sclerosis with an odds ratio of 6.31. Expansions were an even greater risk for amyotrophic lateral sclerosis with frontotemporal dementia (odds ratio 27.59) and a somewhat lesser risk for frontotemporal dementia alone (odds ratio 3.14). There was no increased risk for Lewy body dementia. In a subset of 1362 patients with amyotrophic lateral sclerosis with complete clinical data, we could not confirm previous reports of earlier onset of amyotrophic lateral sclerosis or shorter survival in 25 patients with expansions. These new data confirm ≥31 polyQ repeats in ATXN2 increase the risk for amyotrophic lateral sclerosis, and also for the first time show an even greater risk for amyotrophic lateral sclerosis with frontotemporal dementia. The lack of a more aggressive phenotype in amyotrophic lateral sclerosis patients with expansions has implications for ongoing gene-silencing trials for amyotrophic lateral sclerosis.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Lewy Body Disease , Ataxin-2 , Humans , Phenotype
18.
Article En | MEDLINE | ID: mdl-35225121

ALSUntangled reviews alternative and off-label treatments for people living with amyotrophic lateral sclerosis (PALS). Here we review butyrate and its different chemical forms (butyrates). Butyrates have plausible mechanisms for slowing ALS progression and positive pre-clinical studies. One trial suggests that sodium phenylbutyrate (NaPB) in combination with Tauroursodeoxycholic acid (TUDCA) can slow ALS progression and prolong survival, but the specific contribution of NaPB toward this effect is unclear. Butyrates appear reasonably safe for use in humans. Based on the above information, we support a trial of a butyrate in PALS, but we cannot yet recommend one as a treatment.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Butyrates/therapeutic use
19.
NPJ Genom Med ; 7(1): 8, 2022 Jan 28.
Article En | MEDLINE | ID: mdl-35091648

There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability. We therefore investigated association between structural variation in a set of 25 ALS genes, and ALS risk and phenotype. As expected, the repeat expansion in the C9orf72 gene was identified as associated with ALS. Two other ALS-associated structural variants were identified: inversion in the VCP gene and insertion in the ERBB4 gene. All three variants were associated both with increased risk of ALS and specific phenotypic patterns of disease expression. More than 70% of people with respiratory onset ALS harboured ERBB4 insertion compared with 25% of the general population, suggesting respiratory onset ALS may be a distinct genetic subtype.

20.
Ann Clin Transl Neurol ; 9(1): 50-66, 2022 01.
Article En | MEDLINE | ID: mdl-35014217

OBJECTIVE: Dual leucine zipper kinase (DLK), which regulates the c-Jun N-terminal kinase pathway involved in axon degeneration and apoptosis following neuronal injury, is a potential therapeutic target in amyotrophic lateral sclerosis (ALS). This first-in-human study investigated safety, tolerability, and pharmacokinetics (PK) of oral GDC-0134, a small-molecule DLK inhibitor. Plasma neurofilament light chain (NFL) levels were explored in GDC-0134-treated ALS patients and DLK conditional knockout (cKO) mice. METHODS: The study included placebo-controlled, single and multiple ascending-dose (SAD; MAD) stages, and an open-label safety expansion (OLE) with adaptive dosing for up to 48 weeks. RESULTS: Forty-nine patients were enrolled. GDC-0134 (up to 1200 mg daily) was well tolerated in the SAD and MAD stages, with no serious adverse events (SAEs). In the OLE, three study drug-related SAEs occurred: thrombocytopenia, dysesthesia (both Grade 3), and optic ischemic neuropathy (Grade 4); Grade ≤2 sensory neurological AEs led to dose reductions/discontinuations. GDC-0134 exposure was dose-proportional (median half-life = 84 h). Patients showed GDC-0134 exposure-dependent plasma NFL elevations; DLK cKO mice also exhibited plasma NFL compared to wild-type littermates. INTERPRETATION: This trial characterized GDC-0134 safety and PK, but no adequately tolerated dose was identified. NFL elevations in GDC-0134-treated patients and DLK cKO mice raised questions about interpretation of biomarkers affected by both disease and on-target drug effects. The safety profile of GDC-0134 was considered unacceptable and led to discontinuation of further drug development for ALS. Further work is necessary to understand relationships between neuroprotective and potentially therapeutic effects of DLK knockout/inhibition and NFL changes in patients with ALS.


Amyotrophic Lateral Sclerosis/drug therapy , MAP Kinase Kinase Kinases/antagonists & inhibitors , Neurofilament Proteins/blood , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Adult , Aged , Amyotrophic Lateral Sclerosis/blood , Animals , Biomarkers/blood , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , MAP Kinase Kinase Kinases/deficiency , Male , Mice , Mice, Knockout , Middle Aged , Outcome Assessment, Health Care , Protein Kinase Inhibitors/pharmacokinetics
...