Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38139787

RESUMEN

Anti-inflammatory drugs are used to relieve pain, fever, and inflammation while protecting the cardiovascular system. However, the side effects of currently available medications have limited their usage. Due to these adverse effects, there is a significant need for new drugs. The current trend of research has shifted towards the synthesis of novel anthranilic acid hybrids as anti-inflammatory agents. Phenyl- or benzyl-substituted hybrids exerted very good anti-inflammatory effects in preventing albumin denaturation. To confirm their anti-inflammatory effects, additional ex vivo tests were conducted. These immunohistochemical studies explicated the same compounds with better anti-inflammatory potential. To determine the binding affinity and interaction mode, as well as to explain the anti-inflammatory activities, the molecular docking simulation of the compounds was investigated against human serum albumin. The biological evaluation of the compounds was completed, assessing their antimicrobial activity and spasmolytic effect. Based on the experimental data, we can conclude that a collection of novel hybrids was successfully synthesized, and they can be considered anti-inflammatory drug candidates-alternatives to current therapeutics.

2.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37762158

RESUMEN

The present article focuses on the synthesis and biological evaluation of a novel anthranilic acid hybrid and its diamides as antispasmodics. Methods: Due to the predicted in silico methods spasmolytic activity, we synthesized a hybrid molecule of anthranilic acid and 2-(3-chlorophenyl)ethylamine. The obtained hybrid was then applied in acylation with different acyl chlorides. Using in silico analysis, pharmacodynamic profiles of the compounds were predicted. A thorough biological evaluation of the compounds was conducted assessing their in vitro antimicrobial, cytotoxic, anti-inflammatory activity, and ex vivo spasmolytic activity. Density functional theory (DFT) calculation, including geometry optimization, molecular electrostatic potential (MEP) surface, and HOMO-LUMO analysis for the synthesized compounds was conducted using the B3LYP/6-311G(d,p) method to explore the electronic behavior, reactive regions, and stability and chemical reactivity of the compounds. Furthermore, molecular docking simulation along with viscosity measurement indicated that the newly synthesized compounds interact with DNA via groove binding mode. The obtained results from all the experiments demonstrate that the hybrid molecule and its diamides inherit spasmolytic, antimicrobial, and anti-inflammatory capabilities, making them excellent candidates for future medications.

3.
Biomedicines ; 11(8)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37626698

RESUMEN

Anticoagulants prevent the blood from developing the coagulation process, which is the primary cause of death in thromboembolic illnesses. Phenindione (PID) is a well-known anticoagulant that is rarely employed because it totally prevents coagulation, which can be a life-threatening complication. The goal of the current study is to synthesize drug-loaded Ag NPs to slow down the coagulation process. Methods: A rapid synthesis and stabilization of silver nanoparticles as drug-delivery systems for phenindione (PID) were applied for the first time. Results: Several methods are used to determine the size of the resulting Ag NPs. Additionally, the drug-release capabilities of Ag NPs were established. Density functional theory (DFT) calculations were performed for the first time to indicate the nature of the interaction between PID and nanostructures. DFT findings supported that galactose-loaded nanostructure could be a proper delivery system for phenindione. The drug-loaded Ag NPs were characterized in vitro for their antimicrobial, cytotoxic, and anticoagulant activities, and ex vivo for spasmolytic activity. The obtained data confirmed the drug-release experiments. Drug-loaded Ag NPs showed that prothrombin time (PT, sec) and activated partial thromboplastin time (APTT, sec) are approximately 1.5 times longer than the normal values, while PID itself stopped coagulation at all. This can make the PID-loaded Ag NPs better therapeutic anticoagulants. PID was compared to PID-loaded Ag NPs in antimicrobial, spasmolytic activity, and cytotoxicity. All the experiments confirmed the drug-release results.

4.
Biomedicines ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831141

RESUMEN

Irritable bowel syndrome (IBS) is a functional gastroenterological disorder with complex pathogenesis and multifaceted therapy approaches, aimed at alleviating clinical symptoms and improving the life quality of patients. Its treatment includes dietary changes and drugs from various pharmacological groups such as antidiarrheals, anticholinergics, serotonin receptor antagonists, targeting chloride ion channels, etc. The present article is focused on the synthesis and biological evaluation of some mebeverine precursors as potential antispasmodics. METHODS: In silico analysis aimed at predicting the pharmacodynamic profile of the compounds was performed. Based on these predictions, ex vivo bioelectrical activity (BEA) and immunohistochemical effects of the compounds were established. A thorough biological evaluation of the compounds was conducted assessing their in vitro antimicrobial and cytotoxic activity. RESULTS: All the newly synthesized compounds exerted drug-like properties, whereby 3-methyl-1-phenylbutan-2-amine 3 showed a significant change in BEA due to Ca2+ channel regulation, Ca2+ influx modulation, and a subsequent change in smooth muscle cell response. The immunohistochemical studies showed a good correlation with the obtained data on the BEA, defining amine 3 as a leader structure. No cytotoxicity to human malignant leukemic cell lines (LAMA-84, K-562) was observed for all tested compounds. CONCLUSION: Based on the experimental results, we outlined 3-methyl-1-phenylbutan-2-amine 3 as a potential effective choice for orally active long-term therapy of IBS.

5.
Foods ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36553726

RESUMEN

Higher basidiomycetes are recognized as functional foods due to their bioactive compound content, which exerts various beneficial effects on human health, and which have been used as sources for the development of natural medicines and nutraceuticals for centuries. The aim of this study was to evaluate and compare the biological potential of basidiocarp and mycelial biomass produced by submerged cultivation of a new regionally isolated oyster mushroom. The strain was identified with a high percentage of confidence (99.30%) as Pleurotus ostreatus and was deposited in the GenBank under accession number MW 996755. The ß-glucan content in the basidiocarp and the obtained mycelial biomass was 31.66% and 12.04%, respectively. Three mycelial biomass and basidiocarp extracts were prepared, and the highest total polyphenol content (5.68 ± 0.15 mg GAE/g DW and 3.20 ± 0.04 mg GAE/g DW) was found in the water extract for both the fruiting body and the mycelium biomass. The in vitro antioxidant activity of the extracts was investigated, and it was determined that the water extracts exhibited the most potent radical scavenging activity. The potential ability of this new fungal isolate to affect the contractile activity (CA) of dissected smooth muscle preparations (SMP) was examined for the first time. It was found that oyster mushrooms likely exhibit indirect contractile effects on the gastric smooth muscle (SM) cells.

6.
Folia Med (Plovdiv) ; 62(3): 532-538, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33009766

RESUMEN

INTRODUCTION: Examination of the potential possibilities of 2-chloro-N-(1-(3,4-dimethoxyphenyl)propan-2-yl)-2-phenylacetamide (IQP) to affect bioelectrogenesis and the contractile activity of isolated smooth muscles (SM) from stomach. AIM: Having in mind the structural similarities between the molecules of papaverine and IQP, the aim of the present study was to examine such features of the newly synthesized molecule that may potentially affect the muscle tonus, spontaneous bioelectrical and contractile activities of smooth muscles isolated from the stomach, basing on specific mechanisms of papaverine. MATERIALS AND METHODS: The synthesis of IQP is based on the initially formed aziridine ring by principles of Gilbert's reaction. Impact of IQP on the bioelectrogenesis and the contractile activity of isolated smooth muscles from male Wistar rats was measured by the single sucrose-gap method and isometrically recorded. RESULTS: IQP (1×10-5 - 2.5×10-4 mol/l) causes muscle relaxation, producing changes in two processes that have influence on the mechanical activity of smooth muscles:1.    Blocked Ca2+ influx through the potential-dependent membrane Ca2+ channels, followed in turn by lowering the Ca2+ intracellular levels. This effect is proved by the changes in the frequency and amplitude of spike-potentials in sucrose-bridge experiments when IQP is applied.2.    Activation of a cAMP-dependent signal cascade. The relaxing effect of IQP was significantly reduced in the presence of KT5720(5×10-6 mol/l), an inhibitor of protein kinase A. CONCLUSION: We assume that there might be interconnections between these two IQP-dependent processes, because PKA-dependent phosphorylation of the L-type Ca2+ channels in smooth muscles provokes a reaction of inactivation.


Asunto(s)
Bencenoacetamidas , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Animales , Bencenoacetamidas/química , Bencenoacetamidas/farmacología , Fenómenos Biomecánicos/efectos de los fármacos , Calcio/metabolismo , Masculino , Papaverina , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...