Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Aquat Anim Health ; 35(2): 88-100, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37243311

RESUMEN

OBJECTIVE: Viral hemorrhagic septicemia virus (VHSV) is an aquatic rhabdovirus causing severe disease in freshwater and saltwater fish species. The susceptibility of endangered Pallid Sturgeon Scaphirhynchus albus to VHSV genotype IVb (VHSV-IVb) infection was investigated. METHODS: An in vitro assessment using two Pallid Sturgeon cell lines derived from skin and spleen tissue and in vivo evaluation of juvenile Pallid Sturgeon after exposure to VHSV-IVb were performed. RESULT: Plaque assay and RT-PCR results confirmed VHSV-IVb replication in Pallid Sturgeon cell lines. Sturgeon were also susceptible to VHSV-IVb infection after immersion and injection exposures during laboratory experiments. However, after widespread mortality occurred in all treatment groups, including negative control fish, it was determined that the Pallid Sturgeon stock fish were infected with Missouri River sturgeon iridovirus (MRSIV) prior to experimental challenge. Nevertheless, mortalities were equal or higher among VHSV-exposed fish than among negative controls (MRSIV infected), and histopathological assessments indicated reduced hematopoietic cells in spleen and kidney tissues and hemorrhage in the gastrointestinal organs only in fish from the VHSV treatment. CONCLUSION: These results indicate that Pallid Sturgeon is a susceptible host for VHSV-IVb, but the degree of pathogenicity was confounded by the underlying MRSIV infection. Research comparing susceptibility of specific pathogen-free and MRSIV-infected fish to VHSV-IVb is needed to accurately assess the vulnerability of Pallid Sturgeon to VHSV-IVb.


Asunto(s)
Enfermedades de los Peces , Septicemia Hemorrágica Viral , Novirhabdovirus , Animales , Peces , Genotipo , Agua Dulce , Novirhabdovirus/genética
2.
Cell Rep ; 17(6): 1560-1570, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806295

RESUMEN

Elicitation of broadly neutralizing antibodies remains a long-standing goal of HIV vaccine research. Although such antibodies can arise during HIV-1 infection, gaps in our knowledge of their germline, pre-immune precursor forms, as well as on their interaction with viral Env, limit our ability to elicit them through vaccination. Studies of broadly neutralizing antibodies from the VRC01-class provide insight into progenitor B cell receptors (BCRs) that could develop into this class of antibodies. Here, we employed high-throughput heavy chain variable region (VH)/light chain variable region (VL) deep sequencing, combined with biophysical, structural, and modeling antibody analyses, to interrogate circulating potential VRC01-progenitor BCRs in healthy individuals. Our study reveals that not all humans are equally predisposed to generate VRC01-class antibodies, not all predicted progenitor VRC01-expressing B cells can bind to Env, and the CDRH3 region of germline VRC01 antibodies influence their ability to recognize HIV-1. These findings will be critical to the design of optimized immunogens that should consider CDRH3 interactions.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Regiones Determinantes de Complementariedad/genética , Frecuencia de los Genes/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Alelos , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/química , Linfocitos B/inmunología , Regiones Determinantes de Complementariedad/química , Células Germinativas/metabolismo , VIH-1/inmunología , Humanos , Inmunoglobulina M/metabolismo , Unión Proteica , Dominios Proteicos
4.
Vet Microbiol ; 174(1-2): 16-26, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25263493

RESUMEN

Viral erythrocytic necrosis (VEN) is a condition affecting the red blood cells of more than 20 species of marine and anadromous fishes in the North Atlantic and North Pacific Oceans. Among populations of Pacific herring (Clupea pallasii) on the west coast of North America the disease causes anemia and elevated mortality in periodic epizootics. Presently, VEN is diagnosed by observation of typical cytoplasmic inclusion bodies in stained blood smears from infected fish. The causative agent, erythrocytic necrosis virus (ENV), is unculturable and a presumed iridovirus by electron microscopy. In vivo amplification of the virus in pathogen-free laboratory stocks of Pacific herring with subsequent virus concentration, purification, DNA extraction, and high-throughput sequencing were used to obtain genomic ENV sequences. Fragments with the highest sequence identity to the family Iridoviridae were used to design four sets of ENV-specific polymerase chain reaction (PCR) primers. Testing of blood and tissue samples from experimentally and wild infected Pacific herring as well as DNA extracted from other amphibian and piscine iridoviruses verified the assays were specific to ENV with a limit of detection of 0.0003 ng. Preliminary phylogenetic analyses of a 1448 bp fragment of the putative DNA polymerase gene supported inclusion of ENV in a proposed sixth genus of the family Iridoviridae that contains other erythrocytic viruses from ectothermic hosts. This study provides the first molecular evidence of ENV's inclusion within the Iridoviridae family and offers conventional PCR assays as a means of rapidly surveying the ENV-status of wild and propagated Pacific herring stocks.


Asunto(s)
Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/virología , Iridoviridae/clasificación , Filogenia , Animales , Secuencia de Bases , Cartilla de ADN/genética , Peces , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Iridoviridae/genética , Iridoviridae/aislamiento & purificación , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , Organismos Libres de Patógenos Específicos
5.
J Virol ; 88(5): 2645-57, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24352455

RESUMEN

UNLABELLED: Broadly neutralizing antibodies (bNAbs) against HIV-1 are generated during HIV-1-infection but have not yet been elicited by immunization with recombinant forms of the viral envelope glycoprotein (Env; the target of anti-HIV-1 neutralizing antibodies). A particular type of bNAb targets the CD4-binding site (CD4-BS) region of Env. These antibodies are derived from a limited number of VH/VL genes and can bind to and neutralize diverse HIV-1 strains. Recent reports have demonstrated the limited potential of Env to activate B cells expressing the germline B cell receptor (BCR) forms of anti-CD4-BS bNAbs. A potential reason for the lack of elicitation of anti-CD4-BS bNAbs by Env immunogens is the absence of stimulation of naive B cells expressing the germline BCRs of such antibodies. Several bNAbs have been isolated from HIV-1-infected subjects that target other structurally conserved regions of Env. How frequently Env immunogens stimulate the germline BCRs that give rise to bNAbs that target Env regions other than the CD4-BS is not well understood. Here, we investigated the interactions between diverse Envs and the BCRs of known bNAbs targeting not only the CD4-BS but also conserved elements of the second and third variable Env regions. Our results indicate that Env is generally ineffective in engaging germline BCRs of bNAbs irrespective of their epitope target. Potentially, this is the result of viral evolutionary mechanisms adopted to escape broadly neutralizing antibody responses. Our results also suggest that a single Env capable of activating germline BCRs that target distinct Env epitopes will be very difficult to identify or to design. IMPORTANCE: Broadly neutralizing antibodies against HIV-1 are thought to be an important component of the immune responses that a successful vaccine should elicit. Broadly neutralizing antibodies are generated by a subset of those infected by HIV-1, but so far, they have not been generated by immunization with recombinant Envelope (Env, the target of anti-HIV-1 neutralizing antibodies). Here, we provide evidence that the inability of Env to elicit the production of broadly neutralizing antibodies is due to the inability of diverse Envs to engage the germline B cell receptor forms of known broadly neutralizing antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/genética , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/genética , Linfocitos B/metabolismo , Línea Celular , Eliminación de Gen , Expresión Génica , Variación Genética , Glicosilación , Anticuerpos Anti-VIH/genética , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Ratones , Mutación , Unión Proteica/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Proteínas Recombinantes/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
6.
J Aquat Anim Health ; 24(3): 195-200, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22897154

RESUMEN

Viral erythrocytic necrosis (VEN) is a condition that affects marine and anadromous fish species, including herrings and salmonids, in the Atlantic and Pacific oceans. Infection is frequently associated with severe anemia and causes episodic mortality among wild and hatchery fish when accompanied by additional stressors; VEN can be presumptively diagnosed by (1) light microscopic identification of a single characteristic-a round, magenta-colored, 0.8-µm-diameter inclusion body (IB) within the cytoplasm of erythrocytes and their precursors on Giemsa-stained blood films; or (2) observation (via transmission electron microscopy [TEM]) of the causative iridovirus, erythrocytic necrosis virus (ENV), within erythrocytes or their precursors. To better understand the kinetics of VEN, specific-pathogen-free Pacific herring Clupea pallasii were infected with ENV by intraperitoneal injection. At 1, 4, 7, 10, 14, 21, and 28 d postexposure, samples of blood, spleen, and kidney were collected and assessed (1) via light microscopy for the number of intracytoplasmic IBs in blood smears and (2) via TEM for the number of virions within erythrocytes. The mean prevalence of intracytoplasmic IBs in the blood cells increased from 0% at 0-4 d postexposure to 94% at 28 d postexposure. Viral load within circulating red blood cells peaked at 7 d postexposure, fell slightly, and then reached a plateau. However, blood cells observed within the kidney and spleen tissues demonstrated high levels of ENV between 14 and 28 d postexposure. The results indicate that the viral load within erythrocytes does not correlate well with IB prevalence and that the virus can persist in infected fish for more than 28 d.


Asunto(s)
Eritrocitos , Enfermedades de los Peces/virología , Cuerpos de Inclusión , Necrosis/veterinaria , Carga Viral , Virosis/veterinaria , Animales , Enfermedades de los Peces/patología , Peces , Necrosis/virología , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...