Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Transplant ; 32: 9636897221107009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37088987

RESUMEN

One of the challenges in clinical translation of cell-replacement therapies is the definition of optimal cell generation and storage/recovery protocols which would permit a rapid preparation of cell-treatment products for patient administration. Besides, the availability of injection devices that are simple to use is critical for potential future dissemination of any spinally targeted cell-replacement therapy into general medical practice. Here, we compared the engraftment properties of established human-induced pluripotent stem cells (hiPSCs)-derived neural precursor cell (NPCs) line once cells were harvested fresh from the cell culture or previously frozen and then grafted into striata or spinal cord of the immunodeficient rat. A newly developed human spinal injection device equipped with a spinal cord pulsation-cancelation magnetic needle was also tested for its safety in an adult immunosuppressed pig. Previously frozen NPCs showed similar post-grafting survival and differentiation profile as was seen for freshly harvested cells. Testing of human injection device showed acceptable safety with no detectable surgical procedure or spinal NPCs injection-related side effects.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Inyecciones Espinales , Células-Madre Neurales , Trasplante de Células Madre , Adulto , Animales , Humanos , Ratas , Diferenciación Celular/fisiología , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Vectores Genéticos/genética , Supervivencia de Injerto/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Inyecciones Espinales/efectos adversos , Inyecciones Espinales/instrumentación , Inyecciones Espinales/métodos , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Virus Sendai , Manejo de Especímenes/métodos , Trasplante de Células Madre/efectos adversos , Trasplante de Células Madre/instrumentación , Trasplante de Células Madre/métodos , Porcinos , Recolección de Tejidos y Órganos/métodos , Resultado del Tratamiento , Encéfalo , Médula Espinal
2.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35524407

RESUMEN

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Asunto(s)
Neuralgia , Nociceptores , Animales , Técnicas de Transferencia de Gen , Ratones , Neuralgia/etiología , Neuralgia/terapia , Células del Asta Posterior , Médula Espinal , Asta Dorsal de la Médula Espinal , Porcinos
3.
Nat Med ; 26(1): 118-130, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31873312

RESUMEN

Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Dependovirus/metabolismo , Silenciador del Gen , Técnicas de Transferencia de Gen , Neuronas Motoras/patología , Degeneración Nerviosa/terapia , Piamadre/patología , Médula Espinal/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Atrofia , Progresión de la Enfermedad , Potenciales Evocados Motores , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación/patología , Interneuronas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Desarrollo de Músculos , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Piamadre/fisiopatología , Primates , Pliegue de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/administración & dosificación , Médula Espinal/diagnóstico por imagen , Médula Espinal/fisiopatología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Porcinos
4.
Stem Cell Res Ther ; 10(1): 83, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30867054

RESUMEN

BACKGROUND: A well-characterized method has not yet been established to reproducibly, efficiently, and safely isolate large numbers of clinical-grade multipotent human neural stem cells (hNSCs) from embryonic stem cells (hESCs). Consequently, the transplantation of neurogenic/gliogenic precursors into the CNS for the purpose of cell replacement or neuroprotection in humans with injury or disease has not achieved widespread testing and implementation. METHODS: Here, we establish an approach for the in vitro isolation of a highly expandable population of hNSCs using the manual selection of neural precursors based on their colony morphology (CoMo-NSC). The purity and NSC properties of established and extensively expanded CoMo-NSC were validated by expression of NSC markers (flow cytometry, mRNA sequencing), lack of pluripotent markers and by their tumorigenic/differentiation profile after in vivo spinal grafting in three different animal models, including (i) immunodeficient rats, (ii) immunosuppressed ALS rats (SOD1G93A), or (iii) spinally injured immunosuppressed minipigs. RESULTS: In vitro analysis of established CoMo-NSCs showed a consistent expression of NSC markers (Sox1, Sox2, Nestin, CD24) with lack of pluripotent markers (Nanog) and stable karyotype for more than 15 passages. Gene profiling and histology revealed that spinally grafted CoMo-NSCs differentiate into neurons, astrocytes, and oligodendrocytes over a 2-6-month period in vivo without forming neoplastic derivatives or abnormal structures. Moreover, transplanted CoMo-NSCs formed neurons with synaptic contacts and glia in a variety of host environments including immunodeficient rats, immunosuppressed ALS rats (SOD1G93A), or spinally injured minipigs, indicating these cells have favorable safety and differentiation characteristics. CONCLUSIONS: These data demonstrate that manually selected CoMo-NSCs represent a safe and expandable NSC population which can effectively be used in prospective human clinical cell replacement trials for the treatment of a variety of neurodegenerative disorders, including ALS, stroke, spinal traumatic, or spinal ischemic injury.


Asunto(s)
Citometría de Flujo , Células Madre Multipotentes/citología , Células-Madre Neurales/citología , Línea Celular , Humanos
5.
Sci Transl Med ; 10(440)2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743351

RESUMEN

The use of autologous (or syngeneic) cells derived from induced pluripotent stem cells (iPSCs) holds great promise for future clinical use in a wide range of diseases and injuries. It is expected that cell replacement therapies using autologous cells would forego the need for immunosuppression, otherwise required in allogeneic transplantations. However, recent studies have shown the unexpected immune rejection of undifferentiated autologous mouse iPSCs after transplantation. Whether similar immunogenic properties are maintained in iPSC-derived lineage-committed cells (such as neural precursors) is relatively unknown. We demonstrate that syngeneic porcine iPSC-derived neural precursor cell (NPC) transplantation to the spinal cord in the absence of immunosuppression is associated with long-term survival and neuronal and glial differentiation. No tumor formation was noted. Similar cell engraftment and differentiation were shown in spinally injured transiently immunosuppressed swine leukocyte antigen (SLA)-mismatched allogeneic pigs. These data demonstrate that iPSC-NPCs can be grafted into syngeneic recipients in the absence of immunosuppression and that temporary immunosuppression is sufficient to induce long-term immune tolerance after NPC engraftment into spinally injured allogeneic recipients. Collectively, our results show that iPSC-NPCs represent an alternative source of transplantable NPCs for the treatment of a variety of disorders affecting the spinal cord, including trauma, ischemia, or amyotrophic lateral sclerosis.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/trasplante , Médula Espinal/trasplante , Envejecimiento , Animales , Diferenciación Celular , Reprogramación Celular , Enfermedad Crónica , Fibroblastos/citología , Regulación de la Expresión Génica , Tolerancia Inmunológica , Inmunidad Humoral , Terapia de Inmunosupresión , Neostriado/patología , Células-Madre Neurales/citología , Neuronas/citología , Ratas , Piel/citología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia , Análisis de Supervivencia , Porcinos , Porcinos Enanos , Trasplante Homólogo , Trasplante Isogénico
6.
J Neurosci ; 34(44): 14717-32, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25355224

RESUMEN

Mutations in Kinesin proteins (Kifs) are linked to various neurological diseases, but the specific and redundant functions of the vertebrate Kifs are incompletely understood. For example, Kif5A, but not other Kinesin-1 heavy-chain family members, is implicated in Charcot-Marie-Tooth disease (CMT) and Hereditary Spastic Paraplegia (HSP), but the mechanism of its involvement in the progressive axonal degeneration characteristic of these diseases is not well understood. We report that zebrafish kif5Aa mutants exhibit hyperexcitability, peripheral polyneuropathy, and axonal degeneration reminiscent of CMT and HSP. Strikingly, although kif5 genes are thought to act largely redundantly in other contexts, and zebrafish peripheral neurons express five kif5 genes, kif5Aa mutant peripheral sensory axons lack mitochondria and degenerate. We show that this Kif5Aa-specific function is cell autonomous and is mediated by its C-terminal tail, as only Kif5Aa and chimeric motors containing the Kif5Aa C-tail can rescue deficits. Finally, concurrent loss of the kinesin-3, kif1b, or its adaptor kbp, exacerbates axonal degeneration via a nonmitochondrial cargo common to Kif5Aa. Our results shed light on Kinesin complexity and reveal determinants of specific Kif5A functions in mitochondrial transport, adaptor binding, and axonal maintenance.


Asunto(s)
Axones/metabolismo , Cinesinas/metabolismo , Mitocondrias/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Transporte Axonal/fisiología , Cinesinas/genética , Mitocondrias/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética
7.
Curr Opin Neurobiol ; 23(6): 1041-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23896313

RESUMEN

In peripheral nerves, Schwann cells form myelin, which facilitates the rapid conduction of action potentials along axons in the vertebrate nervous system. Myelinating Schwann cells are derived from neural crest progenitors in a step-wise process that is regulated by extracellular signals and transcription factors. In addition to forming the myelin sheath, Schwann cells orchestrate much of the regenerative response that occurs after injury to peripheral nerves. In response to injury, myelinating Schwann cells dedifferentiate into repair cells that are essential for axonal regeneration, and then redifferentiate into myelinating Schwann cells to restore nerve function. Although this remarkable plasticity has long been recognized, many questions remain unanswered regarding the signaling pathways regulating both myelination and the Schwann cell response to injury.


Asunto(s)
Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Traumatismos de los Nervios Periféricos/metabolismo , Nervios Periféricos/citología , Células de Schwann/citología
8.
Development ; 140(15): 3167-75, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23804499

RESUMEN

In peripheral nerves, Schwann cells form the myelin sheath, which allows the efficient propagation of action potentials along axons. The transcription factor Krox20 regulates the initiation of myelination in Schwann cells and is also required to maintain mature myelin. The adhesion G protein-coupled receptor (GPCR) Gpr126 is essential for Schwann cells to initiate myelination, but previous studies have not addressed the role of Gpr126 signaling in myelin maturation and maintenance. Through analysis of Gpr126 in zebrafish, we define two distinct mechanisms controlling the initiation and maturation of myelin. We show that gpr126 mutant Schwann cells elaborate mature myelin sheaths and maintain krox20 expression for months, provided that the early signaling defect is bypassed by transient elevation of cAMP. At the onset of myelination, Gpr126 and protein kinase A (PKA) function as a switch that allows Schwann cells to initiate krox20 expression and myelination. After myelination is initiated, krox20 expression is maintained and myelin maturation proceeds independently of Gpr126 signaling. Transgenic analysis indicates that the Krox20 cis-regulatory myelinating Schwann cell element (MSE) becomes active at the onset of myelination and that this activity is dependent on Gpr126 signaling. Activity of the MSE declines after initiation, suggesting that other elements are responsible for maintaining krox20 expression in mature nerves. We also show that elevated cAMP does not initiate myelination in the absence of functional Neuregulin 1 (Nrg1) signaling. These results indicate that the mechanisms regulating the initiation of myelination are distinct from those mediating the maturation and maintenance of myelin.


Asunto(s)
Vaina de Mielina/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Expresión Génica , Genes erbB-2 , Sistema de la Línea Lateral/embriología , Sistema de la Línea Lateral/fisiología , Mutación , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Neurregulina-1/genética , Neurregulina-1/metabolismo , Receptores Acoplados a Proteínas G/genética , Células de Schwann/fisiología , Células de Schwann/ultraestructura , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/genética
9.
Dev Cell ; 25(6): 549-50, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23806613

RESUMEN

Oligodendrocytes myelinate axons in the central nervous system (CNS). In this issue of Developmental Cell, Czopka et al. (2013) shed light on the temporal control of myelination by individual cells. They demonstrate that oligodendrocytes in vivo have only a brief time window to initiate myelination, which has important implications for CNS plasticity.


Asunto(s)
Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Proteínas Proto-Oncogénicas c-fyn/fisiología , Médula Espinal/embriología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Animales , Femenino , Humanos , Masculino
10.
Genes Dev ; 26(12): 1312-25, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22677548

RESUMEN

Owing to their covalent modification by cholesterol and palmitate, Hedgehog (Hh) signaling proteins are localized predominantly to the plasma membrane of expressing cells. Yet Hh proteins are also capable of mobilizing to and eliciting direct responses from distant cells. The zebrafish you gene, identified genetically >15 years ago, was more recently shown to encode a secreted glycoprotein that acts cell-nonautonomously in the Hh signaling pathway by an unknown mechanism. We investigated the function of the protein encoded by murine Scube2, an ortholog of you, and found that it mediates release in soluble form of the mature, cholesterol- and palmitate-modified Sonic hedgehog protein signal (ShhNp) when added to cultured cells or purified detergent-resistant membrane microdomains containing ShhNp. The efficiency of Scube2-mediated release of ShhNp is enhanced by the palmitate adduct of ShhNp and by coexpression in ShhNp-producing cells of mDispatchedA (mDispA), a transporter-like protein with a previously defined role in the release of lipid-modified Hh signals. The structural determinants of Scube2 required for its activity in cultured cell assays match those required for rescue of you mutant zebrafish embryos, and we thus conclude that the role of Scube/You proteins in Hh signaling in vivo is to facilitate the release and mobilization of Hh proteins for distant action.


Asunto(s)
Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metabolismo de los Lípidos , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Sistema Libre de Células , Células Cultivadas , Colesterol/metabolismo , Medios de Cultivo/farmacología , Detergentes/farmacología , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Metabolismo de los Lípidos/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Palmitatos/farmacología , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Solubilidad/efectos de los fármacos , Relación Estructura-Actividad , Pez Cebra
11.
J Neurosci ; 29(46): 14408-14, 2009 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19923275

RESUMEN

The clustering of voltage-gated sodium channels at the axon initial segment (AIS) and nodes of Ranvier is essential for the initiation and propagation of action potentials in myelinated axons. Sodium channels localize to the AIS through an axon-intrinsic mechanism driven by ankyrin G, while clustering at the nodes requires cues from myelinating glia that interact with axonal neurofascin186 (Sherman et al., 2005; Dzhashiashvili et al., 2007; Yang et al., 2007). Here, we report that in zebrafish mutants lacking Schwann cells in peripheral nerves (erbb2, erbb3, and sox10/colorless), axons form numerous aberrant sodium channel clusters throughout their length. Morpholino knockdown of ankyrin G, but not neurofascin, reduces the number of sodium channel clusters in Schwann cell-deficient mutants, suggesting that these aberrant clusters form by an axon-intrinsic mechanism. We also find that gpr126 mutants, in which Schwann cells are arrested at the promyelinating stage (Monk et al., 2009), are deficient in the clustering of neurofascin at the nodes of Ranvier. When Schwann cell migration in gpr126 mutants is blocked, there is an increase in the number of neurofascin clusters in peripheral axons. Our results suggest that Schwann cells inhibit the ability of ankyrin G to cluster sodium channels at ectopic locations, restricting its activity to the AIS and nodes of Ranvier.


Asunto(s)
Axones/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/fisiología , Células de Schwann/metabolismo , Canales de Sodio/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Axones/patología , Axones/ultraestructura , Proteínas del Tejido Nervioso/ultraestructura , Inhibición Neural/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/patología , Nódulos de Ranvier/ultraestructura , Células de Schwann/patología , Células de Schwann/ultraestructura , Canales de Sodio/genética , Canales de Sodio/ultraestructura , Pez Cebra , Proteínas de Pez Cebra/ultraestructura
12.
Science ; 325(5946): 1402-5, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19745155

RESUMEN

The myelin sheath allows axons to conduct action potentials rapidly in the vertebrate nervous system. Axonal signals activate expression of specific transcription factors, including Oct6 and Krox20, that initiate myelination in Schwann cells. Elevation of cyclic adenosine monophosphate (cAMP) can mimic axonal contact in vitro, but the mechanisms that regulate cAMP levels in vivo are unknown. Using mutational analysis in zebrafish, we found that the G protein-coupled receptor Gpr126 is required autonomously in Schwann cells for myelination. In gpr126 mutants, Schwann cells failed to express oct6 and krox20 and were arrested at the promyelinating stage. Elevation of cAMP in gpr126 mutants, but not krox20 mutants, could restore myelination. We propose that Gpr126 drives the differentiation of promyelinating Schwann cells by elevating cAMP levels, thereby triggering Oct6 expression and myelination.


Asunto(s)
Vaina de Mielina/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Células de Schwann/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Axones/fisiología , Axones/ultraestructura , Diferenciación Celular , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Sistema de la Línea Lateral/inervación , Datos de Secuencia Molecular , Mutación , Proteína Básica de Mielina/metabolismo , Neurregulina-1/metabolismo , Factor 6 de Transcripción de Unión a Octámeros/genética , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptores Acoplados a Proteínas G/genética , Células de Schwann/citología , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética
13.
Development ; 135(14): 2445-54, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18550713

RESUMEN

Activation of the Notch signaling pathway segregates the non-skeletogenic mesoderm (NSM) from the endomesoderm during sea urchin embryo development. Subsequently, Notch signaling helps specify the four subpopulations of NSM, and influences endoderm specification. To gain further insight into how the Notch signaling pathway is regulated during these cell specification events, we identified a sea urchin homologue of Numb (LvNumb). Previous work in other model systems showed that Numb functions as a Notch signaling pathway antagonist, possibly by mediating the endocytosis of other key Notch interacting proteins. In this study, we show that the vegetal endomesoderm expresses lvnumb during the blastula and gastrula stages, and that the protein is localized to the presumptive NSM. Injections of lvnumb mRNA and antisense morpholinos demonstrate that LvNumb is necessary for the specification of mesodermal cell types, including pigment cells, blastocoelar cells and muscle cells. Functional analysis of the N-terminal PTB domain and the C-terminal PRR domain of LvNumb shows that the PTB domain, but not the PRR domain, is sufficient to recapitulate the demonstrable function of full-length LvNumb. Experiments show that LvNumb requires an active Notch signal to function during NSM specification and that LvNumb functions in the cells responding to Delta and not in the cells presenting the Delta ligand. Furthermore, injection of mRNA encoding the intracellular domain of Notch rescues the LvNumb morpholino phenotype, suggesting that the constitutive intracellular Notch signal overcomes, or bypasses, the absence of Numb during NSM specification.


Asunto(s)
Proteínas de la Membrana/metabolismo , Mesodermo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Notch/metabolismo , Erizos de Mar/embriología , Transducción de Señal , Secuencia de Aminoácidos , Animales , Blástula , ADN Complementario/genética , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Gástrula , Proteínas de la Membrana/química , Mesodermo/citología , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Filogenia , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
14.
Dev Biol ; 300(1): 153-64, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17067570

RESUMEN

The Hedgehog (Hh) and Notch signal transduction pathways control a variety of developmental processes including cell fate choice, differentiation, proliferation, patterning and boundary formation. Because many components of these pathways are conserved, it was predicted and confirmed that pathway components are largely intact in the sea urchin genome. Spatial and temporal location of these pathways in the embryo, and their function in development offer added insight into their mechanistic contributions. Accordingly, all major components of both pathways were identified and annotated in the sea urchin Strongylocentrotus purpuratus genome and the embryonic expression of key components was explored. Relationships of the pathway components, and modifiers predicted from the annotation of S. purpuratus, were compared against cnidarians, arthropods, urochordates, and vertebrates. These analyses support the prediction that the pathways are highly conserved through metazoan evolution. Further, the location of these two pathways appears to be conserved among deuterostomes, and in the case of Notch at least, display similar capacities in endomesoderm gene regulatory networks. RNA expression profiles by quantitative PCR and RNA in situ hybridization reveal that Hedgehog is produced by the endoderm beginning just prior to invagination, and signals to the secondary mesenchyme-derived tissues at least until the pluteus larva stage. RNA in situ hybridization of Notch pathway members confirms that Notch functions sequentially in the vegetal-most secondary mesenchyme cells and later in the endoderm. Functional analyses in future studies will embed these pathways into the growing knowledge of gene regulatory networks that govern early specification and morphogenesis.


Asunto(s)
Embrión no Mamífero/fisiología , Perfilación de la Expresión Génica , Genómica , Proteínas Hedgehog/genética , Receptores Notch/genética , Erizos de Mar/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/fisiología , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Receptores Notch/fisiología , Erizos de Mar/embriología , Erizos de Mar/crecimiento & desarrollo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...