Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Neurotoxicology ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38703899

The refinement of brain morphology extends across childhood, and exposure to environmental toxins during this period may alter typical trends. Radon is a highly common radiologic toxin with a well-established role in cancer among adults. However, effects on developmental populations are understudied in comparison. This study investigated whether home radon exposure is associated with altered brain morphology in youths. Fifty-four participants (6-14yrs, M=10.52yrs, 48.15% male, 89% White) completed a T1-weighted MRI and home measures of radon. We observed a significant multivariate effect of home radon concentrations, which was driven by effects on GMV. Specifically, higher home radon was associated with smaller GMV (F=6.800, p=.012, ηp2=.13). Conversely, there was a trending radon-by-age interaction on WMV, which reached significance when accounting for the chronicity of radon exposure (F=4.12, p=.049, ηp2=.09). We found that youths with above-average radon exposure showed no change in WMV with age, whereas low radon was linked with normative, age-related WMV increases. These results suggest that everyday home radon exposure may alter sensitive structural brain development, impacting developmental trajectories in both gray and white matter.

2.
Front Psychol ; 15: 1330469, 2024.
Article En | MEDLINE | ID: mdl-38469220

Introduction: It is well-established that chronic exposure to environmental toxins can have adverse effects on neuropsychological health, particularly in developing youths. However, home radon, a ubiquitous radiotoxin, has been seldom studied in this context. In the present study, we investigated the degree to which chronic everyday home radon exposure was associated with alterations in transdiagnostic mental health outcomes. Methods: A total of 59 children and adolescents ages 6- to 14-years-old (M = 10.47 years, SD = 2.58; 28 males) completed the study. Parents completed questionnaires detailing aspects of attention and executive function. We used a principal components analysis to derive three domains of neuropsychological functioning: 1) task-based executive function skills, 2) self-and emotion-regulation abilities, and 3) inhibitory control. Additionally, parents completed a home radon test kit and provided information on how long their child had lived in the tested home. We computed a radon exposure index per person based on the duration of time that the child had lived in the home and their measured home radon concentration. Youths were divided into terciles based on their radon exposure index score. Using a MANCOVA design, we determined whether there were differences in neuropsychological domain scores across the three groups, controlling for age, sex, and socioeconomic status. Results: There was a significant multivariate effect of radon group on neuropsychological dysfunction (λ = 0.77, F = 2.32, p = 0.038, ηp2 = 0.12). Examination of univariate effects revealed specific increases in self-and emotion-regulation dysfunction among the youths with the greatest degree of chronic home radon exposure (F = 7.21, p = 0.002, ηp2 = 0.21). There were no significant differences by group in the other tested domains. Discussion: The data suggest potential specificity in the neurotoxic effects of everyday home radon exposure in developing youths, with significant aberrations in self-and emotion-regulation faculties. These findings support the need for better public awareness and public health policy surrounding home radon safety and mitigation strategies.

3.
J Psychopharmacol ; 38(5): 471-480, 2024 May.
Article En | MEDLINE | ID: mdl-38418434

BACKGROUND: Regular cannabis is known to impact higher-order cognitive processes such as attention, but far less is known regarding cognitive flexibility, a component of executive function. Moreover, whether such changes are related to aberrations in the neural oscillatory dynamics serving flexibility remains poorly understood. AIMS: Quantify the neural oscillatory dynamics serving cognitive flexibility by having participants complete a task-switching paradigm during magnetoencephalography (MEG). Probe whole-brain maps to identify alterations in chronic cannabis users relative to nonusers and determine how these alterations relate to the degree of cannabis use involvement. METHODS: In all, 25 chronic cannabis users and 30 demographically matched nonuser controls completed neuropsychological testing, an interview regarding their substance use, a urinalysis, and a task switch paradigm during MEG. Time-frequency windows of interest were identified using a data-driven statistical approach and these were imaged using a beamformer. Whole-brain neural switch cost maps were computed by subtracting the oscillatory maps of the no-switch condition from the switch condition per participant. These were examined for group differences. RESULTS: Cannabis users had weaker theta switch cost responses in the dorsolateral and dorsomedial prefrontal cortices, while nonusers showed the typical pattern of greater recruitment during switch relative to no switch trials. In addition, theta activity in the dorsomedial prefrontal cortex was significantly correlated with cannabis use involvement. CONCLUSIONS: Cannabis users exhibited altered theta switch cost activity compared to nonusers in prefrontal cortical regions, which are critical for cognitive flexibility. This activity scaled with cannabis use involvement, indicating a link between cannabis use and aberrant oscillatory activity underlying cognitive flexibility.


Executive Function , Magnetoencephalography , Humans , Male , Female , Adult , Young Adult , Executive Function/physiology , Executive Function/drug effects , Cognition/drug effects , Cognition/physiology , Neuropsychological Tests , Attention/drug effects , Attention/physiology , Marijuana Abuse/physiopathology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/drug effects , Brain/physiopathology , Brain/drug effects , Case-Control Studies
4.
Brain Behav Immun ; 114: 430-437, 2023 11.
Article En | MEDLINE | ID: mdl-37716379

INTRODUCTION: Inflammatory processes help protect the body from potential threats such as bacterial or viral invasions. However, when such inflammatory processes become chronically engaged, synaptic impairments and neuronal cell death may occur. In particular, persistently high levels of C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) have been linked to deficits in cognition and several psychiatric disorders. Higher-order cognitive processes such as fluid intelligence (Gf) are thought to be particularly vulnerable to persistent inflammation. Herein, we investigated the relationship between elevated CRP and TNF-α and the neural oscillatory dynamics serving Gf. METHODS: Seventy adults between the ages of 20-66 years (Mean = 45.17 years, SD = 16.29, 21.4% female) completed an abstract reasoning task that probes Gf during magnetoencephalography (MEG) and provided a blood sample for inflammatory marker analysis. MEG data were imaged in the time-frequency domain, and whole-brain regressions were conducted using each individual's plasma CRP and TNF-α concentrations per oscillatory response, controlling for age, BMI, and education. RESULTS: CRP and TNF-α levels were significantly associated with region-specific neural oscillatory responses. In particular, elevated CRP concentrations were associated with altered gamma activity in the right inferior frontal gyrus and right cerebellum. In contrast, elevated TNF-α levels scaled with alpha/beta oscillations in the left anterior cingulate and left middle temporal, and gamma activity in the left intraparietal sulcus. DISCUSSION: Elevated inflammatory markers such as CRP and TNF-α were associated with aberrant neural oscillations in regions important for Gf. Linking inflammatory markers with regional neural oscillations may hold promise in identifying mechanisms of cognitive and psychiatric disorders.


Brain , Tumor Necrosis Factor-alpha , Adult , Humans , Female , Young Adult , Middle Aged , Aged , Male , Brain/physiology , Magnetoencephalography/methods , Cognition , Intelligence/physiology , C-Reactive Protein
...