Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Microbiol Spectr ; 12(5): e0353423, 2024 May 02.
Article En | MEDLINE | ID: mdl-38534149

To address intracellular mycobacterial infections, we developed a cocktail of four enzymes that catalytically attack three layers of the mycobacterial envelope. This cocktail is delivered to macrophages, through a targeted liposome presented here as ENTX_001. Endolytix Cocktail 1 (EC1) leverages mycobacteriophage lysin enzymes LysA and LysB, while also including α-amylase and isoamylase for degradation of the mycobacterial envelope from outside of the cell. The LysA family of proteins from mycobacteriophages has been shown to cleave the peptidoglycan layer, whereas LysB is an esterase that hydrolyzes the linkage between arabinogalactan and mycolic acids of the mycomembrane. The challenge of gaining access to the substrates of LysA and LysB provided exogenously was addressed by adding amylase enzymes that degrade the extracellular capsule shown to be present in Mycobacterium tuberculosis. This enzybiotic approach avoids antimicrobial resistance, specific receptor-mediated binding, and intracellular DNA surveillance pathways that limit many bacteriophage applications. We show this cocktail of enzymes is bactericidal in vitro against both rapid- and slow-growing nontuberculous mycobacteria (NTM) as well as M. tuberculosis strains. The EC1 cocktail shows superior killing activity when compared to previously characterized LysB alone. EC1 is also powerfully synergistic with standard-of-care antibiotics. In addition to in vitro killing of NTM, ENTX_001 demonstrates the rescue of infected macrophages from necrotic death by Mycobacteroides abscessus and Mycobacterium avium. Here, we demonstrate shredding of mycobacterial cells by EC1 into cellular debris as a mechanism of bactericide.IMPORTANCEThe world needs entirely new forms of antibiotics as resistance to chemical antibiotics is a critical problem facing society. We addressed this need by developing a targeted enzyme therapy for a broad range of species and strains within mycobacteria and highly related genera including nontuberculous mycobacteria such as Mycobacteroides abscessus, Mycobacterium avium, Mycobacterium intracellulare, as well as Mycobacterium tuberculosis. One advantage of this approach is the ability to drive our lytic enzymes through encapsulation into macrophage-targeted liposomes resulting in attack of mycobacteria in the cells that harbor them where they hide from the adaptive immune system and grow. Furthermore, this approach shreds mycobacteria independent of cell physiology as the drug targets the mycobacterial envelope while sidestepping the host range limitations observed with phage therapy and resistance to chemical antibiotics.


Galactans , Macrophages , Mycobacteriophages , Mycobacterium tuberculosis , Nontuberculous Mycobacteria , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Mycobacteriophages/genetics , Mycobacteriophages/enzymology , Macrophages/microbiology , Macrophages/virology , Humans , Nontuberculous Mycobacteria/drug effects , Liposomes/chemistry , Anti-Bacterial Agents/pharmacology , Peptidoglycan/metabolism , Microbial Sensitivity Tests , Endopeptidases/metabolism , Endopeptidases/pharmacology , Endopeptidases/genetics
2.
Geohealth ; 8(1): e2023GH000889, 2024 Jan.
Article En | MEDLINE | ID: mdl-38161597

Nontuberculous mycobacteria (NTM) are environmentally acquired opportunistic pathogens that can cause chronic lung disease. Within the U.S., Hawai'i shows the highest prevalence rates of NTM lung infections. Here, we investigated a potential role for active volcanism at the Kilauea Volcano located on Hawai'i Island in promoting NTM growth and diversity. We recovered NTM that are known to cause lung disease from plumbing biofilms and soils collected from the Kilauea environment. We also discovered viable Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium intracellulare subsp. chimaera on volcanic ash collected during the 2018 Kilauea eruption. Analysis of soil samples showed that NTM prevalence is positively associated with bulk content of phosphorus, sulfur, and total organic carbon. In growth assays, we showed that phosphorus utilization is essential for proliferation of Kilauea-derived NTM, and demonstrate that NTM cultured with volcanic ash adhere to ash surfaces and remain viable. Ambient dust collected on O'ahu concurrent with the 2018 eruption contained abundant fresh volcanic glass, suggestive of inter-island ash transport. Phylogenomic analyses using whole genome sequencing revealed that Kilauea-derived NTM are genetically similar to respiratory isolates identified on other Hawaiian Islands. Consequently, we posit that volcanic eruptions could redistribute environmental microorganisms over large scales. While additional studies are needed to confirm a direct role of ash in NTM dispersal, our results suggest that volcanic particulates harbor and can redistribute NTM and should therefore be studied as a fomite for these burgeoning, environmentally acquired respiratory infections.

3.
BMC Bioinformatics ; 22(1): 329, 2021 Jun 16.
Article En | MEDLINE | ID: mdl-34130621

BACKGROUND: Viruses, including bacteriophages, are important components of environmental and human associated microbial communities. Viruses can act as extracellular reservoirs of bacterial genes, can mediate microbiome dynamics, and can influence the virulence of clinical pathogens. Various targeted metagenomic analysis techniques detect viral sequences, but these methods often exclude large and genome integrated viruses. In this study, we evaluate and compare the ability of nine state-of-the-art bioinformatic tools, including Vibrant, VirSorter, VirSorter2, VirFinder, DeepVirFinder, MetaPhinder, Kraken 2, Phybrid, and a BLAST search using identified proteins from the Earth Virome Pipeline to identify viral contiguous sequences (contigs) across simulated metagenomes with different read distributions, taxonomic compositions, and complexities. RESULTS: Of the tools tested in this study, VirSorter achieved the best F1 score while Vibrant had the highest average F1 score at predicting integrated prophages. Though less balanced in its precision and recall, Kraken2 had the highest average precision by a substantial margin. We introduced the machine learning tool, Phybrid, which demonstrated an improvement in average F1 score over tools such as MetaPhinder. The tool utilizes machine learning with both gene content and nucleotide features. The addition of nucleotide features improves the precision and recall compared to the gene content features alone.Viral identification by all tools was not impacted by underlying read distribution but did improve with contig length. Tool performance was inversely related to taxonomic complexity and varied by the phage host. For instance, Rhizobium and Enterococcus phages were identified consistently by the tools; whereas, Neisseria prophage sequences were commonly missed in this study. CONCLUSION: This study benchmarked the performance of nine state-of-the-art bioinformatic tools to identify viral contigs across different simulation conditions. This study explored the ability of the tools to identify integrated prophage elements traditionally excluded from targeted sequencing approaches. Our comprehensive analysis of viral identification tools to assess their performance in a variety of situations provides valuable insights to viral researchers looking to mine viral elements from publicly available metagenomic data.


Bacteriophages , Microbiota , Viruses , Bacteriophages/genetics , Genome, Viral/genetics , Humans , Metagenome/genetics , Metagenomics , Viruses/genetics
4.
mSystems ; 6(2)2021 Apr 06.
Article En | MEDLINE | ID: mdl-33824197

Research relating gut microbiome composition to autism spectrum disorders (ASD) has produced inconsistent results, indicative of the disorder's complexity and the need for more sophisticated experimental designs. We address this need by (i) comparing gut microbiome composition between individuals with ASD and neurotypical controls in Arizona and Colorado using standardized DNA extraction and sequencing methods at both locations and (ii) longitudinally evaluating the gut microbiome's relationship to autism behavioral severity, diet, and gastrointestinal symptoms. Gut microbiome composition differed between individuals in Arizona and individuals in Colorado, and gastrointestinal symptoms were significantly higher in ASD individuals than in neurotypical individuals in Arizona but not in Colorado. Gut microbiome composition was significantly associated with ASD while controlling for study-site location but not when controlling for gastrointestinal symptoms. This suggests that non-ASD-related study site differences in gut microbiome composition and different degrees of gastrointestinal symptoms involvement with ASD between sites may contribute to inconsistent results in the literature regarding the association between gut microbiome composition and ASD. In the longitudinal analysis, we found that difference in levels of lethargy/social withdrawal measured in individuals at different time points correlated with the degree of change in gut microbiome composition and that a worsening of inappropriate speech between time points was associated with decreased gut microbiome diversity. This relationship between changes in the gut microbiome composition within individuals and ASD behavioral severity metrics indicates that longitudinal study designs may be useful for exploring microbial drivers of ASD severity when substantial variability exists in baseline microbiome compositions across individuals and geographical regions.IMPORTANCE Autism spectrum disorder (ASD) is a brain developmental disorder with varying behavioral symptom severity both across individuals and within individuals over time. There have been promising but also inconsistent literature results regarding how the gut microbiota (microbiome) may be involved. We found that the gut microbiome in individuals with ASD is affected by study-site location as well as gastrointestinal symptom severity. When we sampled some individuals with ASD at several different time points, we found that some behaviors, such as lethargy/social withdrawal and inappropriate speech, changed along with changes in the gut microbiota composition. This is the first study to relate severity of behavior symptoms to gut microbiome composition within individuals over time and suggests a dynamic relationship between ASD-associated symptoms and gut microbes. Longitudinal study designs as well as collaborative efforts across multiple centers are needed to fully characterize the relationship between ASD and gut microbes.

5.
Microorganisms ; 9(2)2021 Jan 22.
Article En | MEDLINE | ID: mdl-33499212

Nontuberculous mycobacteria (NTM) are environmental organisms that can cause opportunistic pulmonary disease with species diversity showing significant regional variation. In the United States, Hawai'i shows the highest rate of NTM pulmonary disease. The need for improved understanding of NTM reservoirs led us to identify NTM from patient respiratory specimens and compare NTM diversity between outdoor and indoor locations in Hawai'i. A total of 545 water biofilm samples were collected from 357 unique locations across Kaua'i (n = 51), O'ahu (n = 202), Maui (n = 159), and Hawai'i Island (n = 133) and divided into outdoor (n = 179) or indoor (n = 366) categories. rpoB sequence analysis was used to determine NTM species and predictive modeling applied to develop NTM risk maps based on geographic characteristics between environments. M. chimaera was frequently identified from respiratory and environmental samples followed by M. chelonae and M. abscessus; yet significantly less NTM were consistently recovered from outdoor compared to indoor biofilms, as exemplified by showerhead biofilm samples. While the frequency of M. chimaera recovery was comparable between outdoor and indoor showerhead biofilms, phylogenetic analyses demonstrate similar rpoB gene sequences between all showerhead and respiratory M. chimaera isolates, supporting outdoor and indoor environments as possible sources for pulmonary M. chimaera infections.

6.
Viruses ; 12(12)2020 12 10.
Article En | MEDLINE | ID: mdl-33322070

Viruses represent important test cases for data federation due to their genome size and the rapid increase in sequence data in publicly available databases. However, some consequences of previously decentralized (unfederated) data are lack of consensus or comparisons between feature annotations. Unifying or displaying alternative annotations should be a priority both for communities with robust entry representation and for nascent communities with burgeoning data sources. To this end, during this three-day continuation of the Virus Hunting Toolkit codeathon series (VHT-2), a new integrated and federated viral index was elaborated. This Federated Index of Viral Experiments (FIVE) integrates pre-existing and novel functional and taxonomy annotations and virus-host pairings. Variability in the context of viral genomic diversity is often overlooked in virus databases. As a proof-of-concept, FIVE was the first attempt to include viral genome variation for HIV, the most well-studied human pathogen, through viral genome diversity graphs. As per the publication of this manuscript, FIVE is the first implementation of a virus-specific federated index of such scope. FIVE is coded in BigQuery for optimal access of large quantities of data and is publicly accessible. Many projects of database or index federation fail to provide easier alternatives to access or query information. To this end, a Python API query system was developed to enhance the accessibility of FIVE.


Computational Biology , Databases, Genetic , Metagenomics/methods , Viruses/genetics , Computational Biology/methods , Genetic Variation , Genome, Viral , Host-Pathogen Interactions , Humans , User-Computer Interface , Viral Proteins/genetics , Viral Proteins/metabolism , Viruses/metabolism , Web Browser
7.
Appl Environ Microbiol ; 86(21)2020 10 15.
Article En | MEDLINE | ID: mdl-32859599

Environmental nontuberculous mycobacteria (NTM), with the potential to cause opportunistic lung infections, can reside in soil. This might be particularly relevant in Hawai'i, a geographic hot spot for NTM infections and whose soil composition differs from many other areas of the world. Soil components are likely to contribute to NTM prevalence in certain niches as food sources or attachment scaffolds, but the particular types of soils, clays, and minerals that impact NTM growth are not well-defined. Hawai'i soil and chemically weathered rock (saprolite) samples were examined to characterize the microbiome and quantify 11 mineralogical features as well as soil pH. Machine learning methods were applied to identify important soil features influencing the presence of NTM. Next, these features were directly tested in vitro by incubating synthetic clays and minerals in the presence of Mycobacteroides abscessus and Mycobacterium chimaera isolates recovered from the Hawai'i environment, and changes in bacterial growth were determined. Of the components examined, synthetic gibbsite, a mineral form of aluminum hydroxide, inhibited the growth of both M. abscessus and M. chimaera, while other minerals tested showed differential effects on each species. For example, M. abscessus (but not M. chimaera) growth was significantly higher in the presence of hematite, an iron oxide mineral. In contrast, M. chimaera (but not M. abscessus) counts were significantly reduced in the presence of birnessite, a manganese-containing mineral. These studies shed new light on the mineralogic features that promote or inhibit the presence of Hawai'i NTM in Hawai'i soil.IMPORTANCE Globally and in the United States, the prevalence of NTM pulmonary disease-a potentially life-threatening but underdiagnosed chronic illness-is prominently rising. While NTM are ubiquitous in the environment, including in soil, the specific soil components that promote or inhibit NTM growth have not been elucidated. We hypothesized that NTM culture-positive soil contains minerals that promote NTM growth in vitro Because Hawai'i is a hot spot for NTM and a unique geographic archipelago, we examined the composition of Hawai'i soil and identified individual clay, iron, and manganese minerals associated with NTM. Next, individual components were evaluated for their ability to directly modulate NTM growth in culture. In general, gibbsite and some manganese oxides were shown to decrease NTM, whereas iron-containing minerals were associated with higher NTM counts. These data provide new information to guide future analyses of soil-associated factors impacting persistence of these soil bacteria.


Nontuberculous Mycobacteria/growth & development , Soil Microbiology , Soil/chemistry , Hawaii , Species Specificity
8.
Virol J ; 17(1): 124, 2020 08 17.
Article En | MEDLINE | ID: mdl-32807206

BACKGROUND: Nontuberculous mycobacterial (NTM) infections are increasing in prevalence, with current estimates suggesting that over 100,000 people in the United States are affected each year. It is unclear how certain species of mycobacteria transition from environmental bacteria to clinical pathogens, or what genetic elements influence the differences in virulence among strains of the same species. A potential mechanism of genetic evolution and diversity within mycobacteria is the presence of integrated viruses called prophages in the host genome. Prophages may act as carriers of bacterial genes, with the potential of altering bacterial fitness through horizontal gene transfer. In this study, we quantify the frequency and composition of prophages within mycobacteria isolated from clinical samples and compare them against the composition of PhagesDB, an environmental mycobacteriophage database. METHODS: Prophages were predicted by agreement between two discovery tools, VirSorter and Phaster, and the frequencies of integrated prophages were compared by growth rate. Prophages were assigned to PhagesDB lettered clusters. Bacterial virulence gene frequency was calculated using a combination of the Virulence Factor Database (VFDB) and the Pathosystems Resource Integration Center virulence database (Patric-VF) within the gene annotation software Prokka. CRISPR elements were discovered using CRT. ARAGORN was used to quantify tRNAs. RESULTS: Rapidly growing mycobacteria (RGM) were more likely to contain prophage than slowly growing mycobacteria (SGM). CRISPR elements were not associated with prophage abundance in mycobacteria. The abundance of tRNAs was enriched in SGM compared to RGM. We compared the abundance of bacterial virulence genes within prophage genomes from clinical isolates to mycobacteriophages from PhagesDB. Our data suggests that prophages from clinical mycobacteria are enriched for bacterial virulence genes relative to environmental mycobacteriophage from PhagesDB. CONCLUSION: Prophages are present in clinical NTM isolates. Prophages are more likely to be present in RGM compared to SGM genomes. The mechanism and selective advantage of this enrichment by growth rate remain unclear. In addition, the frequency of bacterial virulence genes in prophages from clinical NTM is enriched relative to the PhagesDB environmental proxy. This suggests prophages may act as a reservoir of genetic elements bacteria could use to thrive within a clinical environment.


Genome, Bacterial , Lysogeny , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/virology , Prophages/genetics , Humans , Nontuberculous Mycobacteria/genetics , Nontuberculous Mycobacteria/growth & development , Nontuberculous Mycobacteria/pathogenicity , Virulence
9.
Ecol Evol ; 9(23): 13344-13358, 2019 Dec.
Article En | MEDLINE | ID: mdl-31871649

Microbiota inhabiting the gastrointestinal (GI) tract of animals has important impacts on many host physiological processes. Although host diet is a major factor influencing the composition of the gut micro-organismal community, few comparative studies have considered how differences in diet influence community composition across the length of the GI tract. We used 16S sequencing to compare the microbiota along the length of the GI tract in Abert's (Sciurus aberti) and fox squirrels (S. niger) living in the same habitat. While fox squirrels are generalist omnivores, the diet of Abert's squirrels is unusually high in plant fiber, particularly in winter when they extensively consume fiber-rich inner bark of ponderosa pine (Pinus ponderosa). Consistent with previous studies, microbiota of the upper GI tract of both species consisted primarily of facultative anaerobes and was less diverse than that of the lower GI tract, which included mainly obligate anaerobes. While we found relatively little differentiation between the species in the microbiota of the upper GI tract, the community composition of the lower GI tract was clearly delineated. Notably, the Abert's squirrel lower GI community was more stable in composition and enriched for microbes that play a role in the degradation of plant fiber. In contrast, overall microbial diversity was higher in fox squirrels. We hypothesize that these disparities reflect differences in diet quality and diet breadth between the species.

10.
Genes (Basel) ; 10(9)2019 09 16.
Article En | MEDLINE | ID: mdl-31527408

A wealth of viral data sits untapped in publicly available metagenomic data sets when it might be extracted to create a usable index for the virological research community. We hypothesized that work of this complexity and scale could be done in a hackathon setting. Ten teams comprised of over 40 participants from six countries, assembled to create a crowd-sourced set of analysis and processing pipelines for a complex biological data set in a three-day event on the San Diego State University campus starting 9 January 2019. Prior to the hackathon, 141,676 metagenomic data sets from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) were pre-assembled into contiguous assemblies (contigs) by NCBI staff. During the hackathon, a subset consisting of 2953 SRA data sets (approximately 55 million contigs) was selected, which were further filtered for a minimal length of 1 kb. This resulted in 4.2 million (Mio) contigs, which were aligned using BLAST against all known virus genomes, phylogenetically clustered and assigned metadata. Out of the 4.2 Mio contigs, 360,000 contigs were labeled with domains and an additional subset containing 4400 contigs was screened for virus or virus-like genes. The work yielded valuable insights into both SRA data and the cloud infrastructure required to support such efforts, revealing analysis bottlenecks and possible workarounds thereof. Mainly: (i) Conservative assemblies of SRA data improves initial analysis steps; (ii) existing bioinformatic software with weak multithreading/multicore support can be elevated by wrapper scripts to use all cores within a computing node; (iii) redesigning existing bioinformatic algorithms for a cloud infrastructure to facilitate its use for a wider audience; and (iv) a cloud infrastructure allows a diverse group of researchers to collaborate effectively. The scientific findings will be extended during a follow-up event. Here, we present the applied workflows, initial results, and lessons learned from the hackathon.


Cloud Computing/standards , Genome, Viral , Metagenome , Metagenomics/methods , Big Data , Genome, Human , Humans , Metagenomics/standards , Software
...