Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Science ; 384(6701): eado0713, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38870284

Bacteria can repurpose their own bacteriophage viruses (phage) to kill competing bacteria. Phage-derived elements are frequently strain specific in their killing activity, although there is limited evidence that this specificity drives bacterial population dynamics. Here, we identified intact phage and their derived elements in a metapopulation of wild plant-associated Pseudomonas genomes. We discovered that the most abundant viral cluster encodes a phage remnant resembling a phage tail called a tailocin, which bacteria have co-opted to kill bacterial competitors. Each pathogenic Pseudomonas strain carries one of a few distinct tailocin variants that target the variable polysaccharides in the outer membrane of co-occurring pathogenic Pseudomonas strains. Analysis of herbarium samples from the past 170 years revealed that the same tailocin and bacterial receptor variants have persisted in Pseudomonas populations. These results suggest that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control.


Bacteriocins , Pseudomonas , Bacteriocins/pharmacology , Bacteriocins/metabolism , Bacteriocins/genetics , Pseudomonas/metabolism , Pseudomonas Phages/genetics , Pseudomonas Phages/metabolism , Bacteriophages/genetics , Bacteriophages/physiology , Genetic Variation , Viral Tail Proteins/metabolism , Viral Tail Proteins/genetics , Bacterial Outer Membrane/metabolism , Genome, Bacterial , Polysaccharides, Bacterial/metabolism , Antibiosis
2.
bioRxiv ; 2024 Feb 02.
Article En | MEDLINE | ID: mdl-38352526

Bacteriophages, the viruses of bacteria, are proposed to drive bacterial population dynamics, yet direct evidence of their impact on natural populations is limited. Here we identified viral sequences in a metapopulation of wild plant-associated Pseudomonas spp. genomes. We discovered that the most abundant viral cluster does not encode an intact phage but instead encodes a tailocin - a phage-derived element that bacteria use to kill competitors for interbacterial warfare. Each pathogenic Pseudomonas sp. strain carries one of a few distinct tailocin variants, which target variable polysaccharides in the outer membrane of co-occurring pathogenic strains. Analysis of historic herbarium samples from the last 170 years revealed that the same tailocin and receptor variants have persisted in the Pseudomonas populations for at least two centuries, suggesting the continued use of a defined set of tailocin haplotypes and receptors. These results indicate that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control. One-Sentence Summary: Bacterial pathogens in a host-associated metapopulation use a repurposed prophage to kill their competitors.

3.
Curr Opin Plant Biol ; 74: 102399, 2023 08.
Article En | MEDLINE | ID: mdl-37307746

Genome-wide association studies (GWAS) have yielded tremendous insight into the genetic architecture of trait variation. However, the collections of loci they uncover are far from exhaustive. As many of the complicating factors that confound or limit the efficacy of GWAS are exaggerated over broad geographic scales, a shift toward more analyses using mapping panels sampled from narrow geographic localities ("local" populations) could provide novel, complementary insights. Here, we present an overview of the major complicating factors, review mounting evidence from genomic analyses that these factors are pervasive, and synthesize theoretical and empirical evidence for the power of GWAS in local populations.


Genome-Wide Association Study , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Phenotype , Genomics , Polymorphism, Single Nucleotide
4.
G3 (Bethesda) ; 13(8)2023 08 09.
Article En | MEDLINE | ID: mdl-37317982

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.


Drosophila Proteins , Herbivory , Animals , Herbivory/genetics , Drosophila/genetics , Drosophila/metabolism , Insecta , Drosophila Proteins/genetics , Genomics/methods , Phylogeny , Evolution, Molecular
5.
bioRxiv ; 2023 Mar 16.
Article En | MEDLINE | ID: mdl-36993186

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genetic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families - genes directly mediating interactions with plant chemical defenses - underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many lineages are ancient (>150 million years ago [mya]), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several non-herbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza have among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on plants (bitter or electrophilic phytotoxins) or their ancestral diet (yeast and fruit volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight strong gene candidates that have also been linked to other dietary transitions in Drosophila .

6.
Proc Biol Sci ; 289(1986): 20221938, 2022 Nov 09.
Article En | MEDLINE | ID: mdl-36350206

Herbivorous insects are extraordinarily diverse, yet are found in only one-third of insect orders. This skew may result from barriers to plant colonization, coupled with phylogenetic constraint on plant-colonizing adaptations. The plant-penetrating ovipositor, however, is one trait that surmounts host plant physical defences and may be evolutionarily labile. Ovipositors densely lined with hard bristles have evolved repeatedly in herbivorous lineages, including within the Drosophilidae. However, the evolution and genetic basis of this innovation has not been well studied. Here, we focused on the evolution of this trait in Scaptomyza, a genus sister to Hawaiian Drosophila, that contains a herbivorous clade. Our phylogenetic approach revealed that ovipositor bristle number increased as herbivory evolved in the Scaptomyza lineage. Through a genome-wide association study, we then dissected the genomic architecture of variation in ovipositor bristle number within S. flava. Top-associated variants were enriched for transcriptional repressors, and the strongest associations included genes contributing to peripheral nervous system development. Individual genotyping supported the association at a variant upstream of Gαi, a neural development gene, contributing to a gain of 0.58 bristles/major allele. These results suggest that regulatory variation involving conserved developmental genes contributes to this key morphological trait involved in plant colonization.


Drosophilidae , Animals , Drosophilidae/genetics , Herbivory/genetics , Phylogeny , Genome-Wide Association Study , Drosophila/genetics , Genomics
7.
Philos Trans R Soc Lond B Biol Sci ; 377(1855): 20200512, 2022 07 18.
Article En | MEDLINE | ID: mdl-35634919

A paradoxical finding from genome-wide association studies (GWAS) in plants is that variation in metabolite profiles typically maps to a small number of loci, despite the complexity of underlying biosynthetic pathways. This discrepancy may partially arise from limitations presented by geographically diverse mapping panels. Properties of metabolic pathways that impede GWAS by diluting the additive effect of a causal variant, such as allelic and genetic heterogeneity and epistasis, would be expected to increase in severity with the geographical range of the mapping panel. We hypothesized that a population from a single locality would reveal an expanded set of associated loci. We tested this in a French Arabidopsis thaliana population (less than 1 km transect) by profiling and conducting GWAS for glucosinolates, a suite of defensive metabolites that have been studied in depth through functional and genetic mapping approaches. For two distinct classes of glucosinolates, we discovered more associations at biosynthetic loci than the previous GWAS with continental-scale mapping panels. Candidate genes underlying novel associations were supported by concordance between their observed effects in the TOU-A population and previous functional genetic and biochemical characterization. Local populations complement geographically diverse mapping panels to reveal a more complete genetic architecture for metabolic traits. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.


Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Genetic Variation , Genome-Wide Association Study , Glucosinolates/metabolism , Quantitative Trait Loci
8.
Curr Opin Insect Sci ; 36: 149-156, 2019 12.
Article En | MEDLINE | ID: mdl-31698152

The transition to herbivory by insects is associated with distinct genomic signatures. Sequenced genomes of extant herbivore species reveal the result of these transitions, but in lieu of comparisons between herbivorous and non-herbivorous lineages that diverged recently, such datasets have shed less light on the evolutionary genomic processes involved in diet shifts to or from herbivory. Here, we propose that the comparative genomics of diet shifts between closely related insect herbivores and non-herbivores, and within densely-sampled clades of herbivores, will help reveal the extent to which herbivory evolves through the co-option and subtle remodeling of widely-conserved gene families with functions ancestrally distinct from phytophagy.


Genome, Insect , Herbivory , Insecta/genetics , Animals , Biological Evolution , Diet , Insecta/physiology , Plants/chemistry
9.
Mol Biol Evol ; 36(10): 2105-2110, 2019 10 01.
Article En | MEDLINE | ID: mdl-31236589

Horizontal gene transfer events have played a major role in the evolution of microbial species, but their importance in animals is less clear. Here, we report horizontal gene transfer of cytolethal distending toxin B (cdtB), prokaryotic genes encoding eukaryote-targeting DNase I toxins, into the genomes of vinegar flies (Diptera: Drosophilidae) and aphids (Hemiptera: Aphididae). We found insect-encoded cdtB genes are most closely related to orthologs from bacteriophage that infect Candidatus Hamiltonella defensa, a bacterial mutualistic symbiont of aphids that confers resistance to parasitoid wasps. In drosophilids, cdtB orthologs are highly expressed during the parasitoid-prone larval stage and encode a protein with ancestral DNase activity. We show that cdtB has been domesticated by diverse insects and hypothesize that it functions in defense against their natural enemies.


Aphids/genetics , Bacterial Toxins/genetics , Drosophila/genetics , Gene Transfer, Horizontal , Amino Acid Sequence , Animals , Aphids/microbiology , Deoxyribonucleases/genetics , Drosophila/microbiology
10.
Plant J ; 97(1): 164-181, 2019 01.
Article En | MEDLINE | ID: mdl-30466152

Environmental sequencing shows that plants harbor complex communities of microbes that vary across environments. However, many approaches for mapping plant genetic variation to microbe-related traits were developed in the relatively simple context of binary host-microbe interactions under controlled conditions. Recent advances in sequencing and statistics make genome-wide association studies (GWAS) an increasingly promising approach for identifying the plant genetic variation associated with microbes in a community context. This review discusses early efforts on GWAS of the plant phyllosphere microbiome and the outlook for future studies based on human microbiome GWAS. A workflow for GWAS of the phyllosphere microbiome is then presented, with particular attention to how perspectives on the mechanisms, evolution and environmental dependence of plant-microbe interactions will influence the choice of traits to be mapped.


Genome-Wide Association Study , Host Microbial Interactions , Microbiota , Plants/genetics , Plants/microbiology
11.
Ecosphere ; 9(9)2018 Sep.
Article En | MEDLINE | ID: mdl-30828480

Plant distributions can be limited by habitat-biased herbivory, but the proximate causes of such biases are rarely known. Distinguishing plant-centric from herbivore-centric mechanisms driving differential herbivory between habitats is difficult without experimental manipulation of both plants and herbivores. Here we tested alternative hypotheses driving habitat-biased herbivory in bittercress (Cardamine cordifolia), which is more abundant under shade of shrubs and trees (shade) than in nearby meadows (sun) where herbivory is intense from the specialist fly Scaptomyza nigrita. This system has served as a textbook example of habitat-biased herbivory driving a plant's distribution across an ecotone, but the proximate mechanisms underlying differential herbivory are still unclear. First, we found that higher S. nigrita herbivory in sun habitats contrasts sharply with their preference to attack plants from shade habitats in laboratory choice experiments. Second, S. nigrita strongly preferred leaves in simulated sun over simulated shade habitats, regardless of plant source habitat. Thus, herbivore preference for brighter, warmer habitats overrides their preference for more palatable shade plants. This promotes the sun-biased herbivore pressure that drives the distribution of bittercress into shade habitats.

12.
Am J Bot ; 103(7): 1187-96, 2016 07.
Article En | MEDLINE | ID: mdl-27206460

PREMISE OF THE STUDY: Despite being highly fertile and occupying a large geographic region, the North American heartleaf bittercress (Cardamine cordifolia; Brassicaceae) has a puzzling triploid-like chromosome number (2n = 3x = 24). As most triploids are sterile, we embarked on a detailed analysis of the C. cordifolia genome to elucidate its origin and structure. METHODS: Mitotic and meiotic chromosome complement of C. cordifolia was analyzed by comparative chromosome painting using chromosome-specific BAC contigs of Arabidopsis thaliana. Resulting chromosome patterns were documented by multicolor fluorescence microscopy and compared with known ancestral and extant Brassicaceae genomes. KEY RESULTS: We discovered that C. cordifolia is not a triploid hybrid but a diploidized tetraploid with the prevalence of regular, diploid-like meiotic pairing. The ancestral tetraploid chromosome number (2n = 32) was reduced to a triploid-like number (2n = 24) through four terminal chromosome translocations. CONCLUSIONS: The structure of the pseudotriploid C. cordifolia genome results from a stepwise diploidization process after whole-genome duplication. We showed that translocation-based descending dysploidy (from n = 16 to n = 12) was mediated by the formation of five new chromosomes. The genome of C. cordifolia represents the diploidization process in statu nascendi and provides valuable insights into mechanisms of postpolyploidy rediploidization in land plants. Our data further suggest that chromosome number alone does not need to be a reliable proxy of species' evolutionary past and that the same chromosome number may originate either by polyploidization (hybridization) or due to descending dysploidy.


Cardamine/genetics , Chromosomes, Plant/genetics , Genome, Plant/genetics , Ploidies , Biological Evolution , Chromosome Painting , Geography , Hybridization, Genetic , Karyotype , Tetraploidy , Triploidy
14.
Ecol Evol ; 6(10): 3256-68, 2016 05.
Article En | MEDLINE | ID: mdl-27096082

Most herbivorous insect species are restricted to a narrow taxonomic range of host plant species. Herbivore species that feed on mustard plants and their relatives in the Brassicales have evolved highly efficient detoxification mechanisms that actually prevent toxic mustard oils from forming in the bodies of the animals. However, these mechanisms likely were not present during the initial stages of specialization on mustard plants ~100 million years ago. The herbivorous fly Scaptomyza nigrita (Drosophilidae) is a specialist on a single mustard species, bittercress (Cardamine cordifolia; Brassicaceae) and is in a fly lineage that evolved to feed on mustards only in the past 10-20 million years. In contrast to many mustard specialists, S. nigrita does not prevent formation of toxic breakdown products (mustard oils) arising from glucosinolates (GLS), the primary defensive compounds in mustard plants. Therefore, it is an appealing model for dissecting the early stages of host specialization. Because mustard oils actually form in the bodies of S. nigrita, we hypothesized that in lieu of a specialized detoxification mechanism, S. nigrita may mitigate exposure to high GLS levels within plant tissues using behavioral avoidance. Here, we report that jasmonic acid (JA) treatment increased GLS biosynthesis in bittercress, repelled adult female flies, and reduced larval growth. S. nigrita larval damage also induced foliar GLS, especially in apical leaves, which correspondingly displayed the least S. nigrita damage in controlled feeding trials and field surveys. Paradoxically, flies preferred to feed and oviposit on GLS-producing Arabidopsis thaliana despite larvae performing worse in these plants versus non-GLS-producing mutants. GLS may be feeding cues for S. nigrita despite their deterrent and defensive properties, which underscores the diverse relationship a mustard specialist has with its host when lacking a specialized means of mustard oil detoxification.

15.
Curr Biol ; 26(2): R73-R76, 2016 Jan 25.
Article En | MEDLINE | ID: mdl-26811893

Combining modern transgenic techniques with fitness measurements and enzyme activity assays, a new study demonstrates a habitat-dependent tradeoff between two alleles of a key detoxification enzyme in fruit flies. The elegant findings provide concrete, elusive evidence supporting a foundational and controversial theory about the maintenance of genetic variation.


Models, Genetic , Selection, Genetic , Alleles , Animals , Genetic Variation , Walking
16.
Annu Rev Ecol Evol Syst ; 47: 165-187, 2016 Nov.
Article En | MEDLINE | ID: mdl-28736510

Understanding the processes that generate and maintain genetic variation within populations is a central goal in evolutionary biology. Theory predicts that some of this variation is maintained as a consequence of adapting to variable habitats. Studies in herbivorous insects have played a key role in confirming this prediction. Here, we highlight theoretical and conceptual models for the maintenance of genetic diversity in herbivorous insects, empirical genomic studies testing these models, and pressing questions within the realm of evolutionary and functional genomic studies. To address key gaps, we propose an integrative approach combining population genomic scans for adaptation, genome-wide characterization of targets of selection through experimental manipulations, mapping the genetic architecture of traits influencing fitness, and functional studies. We also stress the importance of studying the maintenance of genetic variation across biological scales-from variation within populations to divergence among populations-to form a comprehensive view of adaptation in herbivorous insects.

17.
Mol Biol Evol ; 31(9): 2441-56, 2014 Sep.
Article En | MEDLINE | ID: mdl-24974374

Chemically defended plant tissues present formidable barriers to herbivores. Although mechanisms to resist plant defenses have been identified in ancient herbivorous lineages, adaptations to overcome plant defenses during transitions to herbivory remain relatively unexplored. The fly genus Scaptomyza is nested within the genus Drosophila and includes species that feed on the living tissue of mustard plants (Brassicaceae), yet this lineage is derived from microbe-feeding ancestors. We found that mustard-feeding Scaptomyza species and microbe-feeding Drosophila melanogaster detoxify mustard oils, the primary chemical defenses in the Brassicaceae, using the widely conserved mercapturic acid pathway. This detoxification strategy differs from other specialist herbivores of mustard plants, which possess derived mechanisms to obviate mustard oil formation. To investigate whether mustard feeding is coupled with evolution in the mercapturic acid pathway, we profiled functional and molecular evolutionary changes in the enzyme glutathione S-transferase D1 (GSTD1), which catalyzes the first step of the mercapturic acid pathway and is induced by mustard defense products in Scaptomyza. GSTD1 acquired elevated activity against mustard oils in one mustard-feeding Scaptomyza species in which GstD1 was duplicated. Structural analysis and mutagenesis revealed that substitutions at conserved residues within and near the substrate-binding cleft account for most of this increase in activity against mustard oils. Functional evolution of GSTD1 was coupled with signatures of episodic positive selection in GstD1 after the evolution of herbivory. Overall, we found that preexisting functions of generalized detoxification systems, and their refinement by natural selection, could play a central role in the evolution of herbivory.


Acetylcysteine/metabolism , Drosophilidae/physiology , Glutathione Transferase/genetics , Insect Proteins/genetics , Mustard Plant/metabolism , Plant Oils/metabolism , Animals , Drosophilidae/classification , Drosophilidae/genetics , Evolution, Molecular , Gene Duplication , Glutathione Transferase/metabolism , Herbivory/genetics , Insect Proteins/metabolism , Mustard Plant/chemistry , Mutation , Phylogeny , Selection, Genetic , Signal Transduction
18.
Curr Opin Plant Biol ; 16(4): 443-50, 2013 Aug.
Article En | MEDLINE | ID: mdl-23834766

Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains genome-wide functionally important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to address this hypothesis. Population genomic studies of Arabidopsis thaliana and its relatives suggest spatial variation in herbivory maintains adaptive genetic variation controlling defense phenotypes, both within and among populations. Conversely, inter-species variation in plant defenses promotes adaptive genetic variation in herbivores. Emerging genomic model herbivores of Arabidopsis could illuminate how genetic variation in herbivores and plants interact simultaneously.


Arthropods/genetics , Food Chain , Genetic Variation , Plants/genetics , Selection, Genetic , Animals , Arabidopsis/genetics , Arthropods/physiology , Biological Evolution , Herbivory , Models, Biological
19.
Genome Biol Evol ; 4(9): 900-16, 2012.
Article En | MEDLINE | ID: mdl-22813779

Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg-adult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes.


Drosophila/genetics , Evolution, Molecular , Genes, Insect , Herbivory/genetics , Animals , Arabidopsis/chemistry , Drosophila/metabolism , Gene Expression Profiling , Glucosinolates/chemistry , Host-Parasite Interactions , Larva/genetics , Larva/metabolism , Phenotype , Phylogeny , Plant Leaves/chemistry , Sequence Analysis, RNA , Stress, Physiological
...