Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38994998

RESUMEN

Iron is often accumulated in the liver during pathological conditions such as cirrhosis and cancer. Elevated expression of glucose transporters GLUT1 and GLUT3 is associated with reduced overall survival in patients with hepatocellular carcinoma. However, it is not known whether iron can regulate glucose transporters and contribute to tumor proliferation. In the present study, we found that treatment of human liver cell line HepG2 with ferric ammonium citrate (FAC) resulted in a significant upregulation of GLUT3 mRNA and protein in a dose-dependent manner. Similarly, iron accumulation in mice fed with high dietary iron as well as in mice injected intraperitoneally with iron dextran enhanced the GLUT3 expression drastically in the liver. We demonstrated that iron-induced hepatic GLUT3 upregulation is mediated by the LKB1/AMPK/CREB1 pathway, and this activation was reversed when treated with iron chelator deferiprone. In addition, inhibition of GLUT3 using siRNA prevented iron-mediated increase in the expression of cell cycle markers and cellular hyperproliferation. Furthermore, exogenous sodium beta-hydroxybutyrate treatment prevented iron-mediated hepatic GLUT3 activation both in vitro and in vivo. Together, these results underscore the importance of iron, AMPK, CREB1 and GLUT3 pathways in cell proliferation and highlight the therapeutic potential of sodium beta-hydroxybutyrate in hepatocellular carcinoma with high GLUT3 expression.


Asunto(s)
Proliferación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Transportador de Glucosa de Tipo 3 , Hierro , Hígado , Proliferación Celular/efectos de los fármacos , Animales , Humanos , Transportador de Glucosa de Tipo 3/metabolismo , Transportador de Glucosa de Tipo 3/genética , Células Hep G2 , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hierro/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Compuestos Férricos/farmacología , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética
2.
Nutrients ; 15(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38068803

RESUMEN

Iron is an essential micronutrient for athletes, intricately linked to their performance, by regulating cellular respiration and metabolism. Impaired iron levels in the body can significantly hinder athletic performance. The increased demand for iron due to exercise, coupled with potential dietary iron insufficiencies, particularly among endurance athletes, amplifies the risk of iron deficiency. Moreover, prolonged exercise can impact iron absorption, utilization, storage, and overall iron concentrations in an athlete. On the contrary, iron overload may initially lead to enhanced performance; however, chronic excess iron intake or underlying genetic conditions can lead to detrimental health consequences and may negatively impact athletic performance. Excess iron induces oxidative damage, not only compromising muscle function and recovery, but also affecting various tissues and organs in the body. This narrative review delineates the complex relationship between exercise and iron metabolism, and its profound effects on athletic performance. The article also provides guidance on managing iron intake through dietary adjustments, oral iron supplementation for performance enhancement in cases of deficiency, and strategies for addressing iron overload in athletes. Current research is focused on augmenting iron absorption by standardizing the route of administration while minimizing side effects. Additionally, there is ongoing work to identify inhibitors and activators that affect iron absorption, aiming to optimize the body's iron levels from dietary sources, supplements, and chelators. In summary, by refining the athletic diet, considering the timing and dosage of iron supplements for deficiency, and implementing chelation therapies for iron overload, we can effectively enhance athletic performance and overall well-being.


Asunto(s)
Rendimiento Atlético , Sobrecarga de Hierro , Humanos , Dieta , Ejercicio Físico/fisiología , Hierro/metabolismo , Suplementos Dietéticos , Atletas
3.
PLoS One ; 17(8): e0272506, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35939447

RESUMEN

Heterotrimeric G-protein transducin, Gt, is a key signal transducer and amplifier in retinal rod and cone photoreceptor cells. Despite similar subunit composition, close amino acid identity, and identical posttranslational farnesylation of their Gγ subunits, rods and cones rely on unique Gγ1 (Gngt1) and Gγc (Gngt2) isoforms, respectively. The only other farnesylated G-protein γ-subunit, Gγ11 (Gng11), is expressed in multiple tissues but not retina. To determine whether Gγ1 regulates uniquely rod phototransduction, we generated transgenic rods expressing Gγ1, Gγc, or Gγ11 in Gγ1-deficient mice and analyzed their properties. Immunohistochemistry and Western blotting demonstrated the robust expression of each transgenic Gγ in rod cells and restoration of Gαt1 expression, which is greatly reduced in Gγ1-deficient rods. Electroretinography showed restoration of visual function in all three transgenic Gγ1-deficient lines. Recordings from individual transgenic rods showed that photosensitivity impaired in Gγ1-deficient rods was also fully restored. In all dark-adapted transgenic lines, Gαt1 was targeted to the outer segments, reversing its diffuse localization found in Gγ1-deficient rods. Bright illumination triggered Gαt1 translocation from the rod outer to inner segments in all three transgenic strains. However, Gαt1 translocation in Gγ11 transgenic mice occurred at significantly dimmer background light. Consistent with this, transretinal ERG recordings revealed gradual response recovery in moderate background illumination in Gγ11 transgenic mice but not in Gγ1 controls. Thus, while farnesylated Gγ subunits are functionally active and largely interchangeable in supporting rod phototransduction, replacement of retina-specific Gγ isoforms by the ubiquitous Gγ11 affects the ability of rods to adapt to background light.


Asunto(s)
Subunidades gamma de la Proteína de Unión al GTP , Células Fotorreceptoras Retinianas Bastones , Animales , Electrorretinografía , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Ratones , Ratones Transgénicos , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transducina/genética , Transducina/metabolismo
4.
Antioxidants (Basel) ; 11(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35624729

RESUMEN

Iron progressively accumulates with age and can be further exacerbated by dietary iron intake, genetic factors, and repeated blood transfusions. While iron plays a vital role in various physiological processes within the human body, its accumulation contributes to cellular aging in several species. In its free form, iron can initiate the formation of free radicals at a cellular level and contribute to systemic disorders. This is most evident in high iron conditions such as hereditary hemochromatosis, when accumulation of iron contributes to the development of arthritis, cirrhosis, or cardiomyopathy. A growing body of research has further identified iron's contributory effects in neurodegenerative diseases, ocular disorders, cancer, diabetes, endocrine dysfunction, and cardiovascular diseases. Reducing iron levels by repeated phlebotomy, iron chelation, and dietary restriction are the common therapeutic considerations to prevent iron toxicity. Chelators such as deferoxamine, deferiprone, and deferasirox have become the standard of care in managing iron overload conditions with other potential applications in cancer and cardiotoxicity. In certain animal models, drugs with iron chelating ability have been found to promote health and even extend lifespan. As we further explore the role of iron in the aging process, iron chelators will likely play an increasingly important role in our health.

5.
Oxid Med Cell Longev ; 2022: 7163326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35116092

RESUMEN

Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.


Asunto(s)
Sobrecarga de Hierro/patología , Neoplasias/patología , Enfermedades Neurodegenerativas/patología , Vía de Señalización Wnt/fisiología , Envejecimiento , Remodelación Ósea , Oftalmopatías/metabolismo , Oftalmopatías/patología , Humanos , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo/genética , Vía de Señalización Wnt/efectos de los fármacos
6.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G262-G269, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34287090

RESUMEN

Iron accumulation is frequently associated with chronic liver diseases. However, our knowledge on how iron contributes to the liver injury is limited. Aberrant Wnt/ß-catenin signaling is a hallmark of several hepatic pathologies. We recently reported that peroxisome proliferator-activated receptor α (PPARα) agonist, fenofibrate, prevents iron-induced oxidative stress and ß-catenin signaling by chelating the iron. Sirtuin3 (Sirt3), a type of NAD+-dependent deacetylase, that plays a critical role in metabolic regulation was found to prevent ischemia reperfusion injury (IRI) by normalizing the Wnt/ß-catenin pathway. In the present study, we explored if fenofibrate prevents iron-induced liver injury by regulating the Sirt3 and ß-catenin signaling. In vitro and in vivo iron treatment resulted in the downregulation of PPARα, Sirt3, active ß-catenin, and its downstream target gene c-Myc in the mouse liver. Pharmacological activation of Sirt3, both in vitro and in vivo, by Honokiol (HK), a known activator of Sirt3, abrogated the inhibitory effect of iron overload on active ß-catenin expression and prevented the iron-induced upregulation of α smooth muscle actin (αSMA) and TGFß expression. Intrinsically, PPARα knockout mice showed significant downregulation of hepatic Sirt3 levels. In addition, treatment of iron overload mice with PPARα agonist fenofibrate reduced hepatic iron accumulation and prevented iron-induced downregulation of liver Sirt3 and active ß-catenin, mitigating the progression of fibrosis. Thus, our results establish a novel link between hepatic iron and PPARα, Sirt3, and ß-catenin signaling. Further exploration on the mechanisms by which fenofibrate ameliorates iron-induced liver injury likely has significant therapeutic impact on iron-associated chronic liver diseases.NEW & NOTEWORTHY Hepatic intracellular iron accumulation has been implicated in the pathophysiology of chronic liver diseases. In this study, we identified a novel mechanism involved in the progression of fibrosis. Excess iron accumulation in liver caused downregulation of PPARα-Sirt3-Wnt signaling leading to fibrosis. This work has significant translational potential as PPARα agonist fenofibrate could be an attractive therapeutic drug for the treatment of liver disorders associated with iron overload.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Fenofibrato/farmacología , Cirrosis Hepática/prevención & control , Hígado/efectos de los fármacos , PPAR alfa/agonistas , Sirtuina 3/metabolismo , beta Catenina/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Complejo Hierro-Dextran , Hígado/enzimología , Hígado/patología , Cirrosis Hepática/enzimología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sirtuina 3/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt
7.
NPJ Aging Mech Dis ; 6: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33145027

RESUMEN

Accumulating evidence strongly implicates iron in the pathogenesis of aging and disease. Iron levels have been found to increase with age in both the human and mouse retinas. We and others have shown that retinal diseases such as age-related macular degeneration and diabetic retinopathy are associated with disrupted iron homeostasis, resulting in retinal iron accumulation. In addition, hereditary disorders due to mutation in one of the iron regulatory genes lead to age dependent retinal iron overload and degeneration. However, our knowledge on whether iron toxicity contributes to the retinopathy is limited. Recently, we reported that iron accumulation is associated with the upregulation of retinal and renal renin-angiotensin system (RAS). Evidences indicate that multiple genes/components of the RAS are targets of Wnt/ß-catenin signaling. Interestingly, aberrant activation of Wnt/ß-catenin signaling is observed in several degenerative diseases. In the present study, we explored whether iron accumulation regulates canonical Wnt signaling in the retina. We found that in vitro and in vivo iron treatment resulted in the upregulation of Wnt/ß-catenin signaling and its downstream target genes including renin-angiotensin system in the retina. We confirmed further that iron activates canonical Wnt signaling in the retina using TOPFlash T-cell factor/lymphoid enhancer factor promoter assay and Axin2-LacZ reporter mouse. The presence of an iron chelator or an antioxidant reversed the iron-mediated upregulation of Wnt/ß-catenin signaling in retinal pigment epithelial (RPE) cells. In addition, treatment of RPE cells with peroxisome proliferator-activated receptor (PPAR) α-agonist fenofibrate prevented iron-induced activation of oxidative stress and Wnt/ß-catenin signaling by chelating the iron. The role of fenofibrate, an FDA-approved drug for hyperlipidemia, as an iron chelator has potentially significant therapeutic impact on iron associated degenerative diseases.

8.
Asian J Pharm Sci ; 15(2): 237-251, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32373202

RESUMEN

Based on the evidence that hemochromatosis, an iron-overload disease, drives hepatocellular carcinoma, we hypothesized that chronic exposure to excess iron, either due to genetic or environmental causes, predisposes an individual to cancer. Using pancreatic cancer as our primary focus, we employed cell culture studies to interrogate the connection between excess iron and cancer, and combined in vitro and in vivo studies to explore the connection further. Ferric ammonium citrate was used as an exogenous iron source. Chronic exposure to excess iron induced epithelial-mesenchymal transition (EMT) in normal and cancer cell lines, loss of p53, and suppression of p53 transcriptional activity evidenced from decreased expression of p53 target genes (p21, cyclin D1, Bax, SLC7A11). To further extrapolate our cell culture data, we generated EL-KrasG12D (EL-Kras) mouse (pancreatic neoplastic mouse model) expressing Hfe+/+ and Hfe-/- genetic background. p53 target gene expression decreased in EL-Kras/Hfe-/- mouse pancreas compared to EL-Kras/Hfe+/+ mouse pancreas. Interestingly, the incidence of acinar-to-ductal metaplasia and cystic pancreatic neoplasms (CPN) decreased in EL-Kras/Hfe-/- mice, but the CPNs that did develop were larger in these mice than in EL-Kras/Hfe+/+ mice. In conclusion, these in vitro and in vivo studies support a potential role for chronic exposure to excess iron as a promoter of more aggressive disease via p53 loss and SLC7A11 upregulation within pancreatic epithelial cells.

9.
Am J Physiol Renal Physiol ; 317(2): F512-F517, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188032

RESUMEN

Diabetic nephropathy (DN) is the most common cause of end-stage renal disease associated with high mortality worldwide. Increases in iron levels have been reported in diabetic rat kidneys as well as in human urine of patients with diabetes. In addition, a low-iron diet or iron chelators delay the progression of DN in patients with diabetes and in animal models of diabetes. Possible maladaptive mechanisms of organ damage by tissue iron accumulation have not been well studied. We recently reported that iron induced the retinal renin-angiotensin system (RAS) and accelerated the progression of diabetic retinopathy. However, whether iron regulates the systemic RAS is unknown. To explore if iron alters the expression of intrarenal RAS and its role in the progression of DN, we used the high Fe iron (HFE) knockout mouse, a genetic model of systemic iron overload. We found that diabetes upregulated the expression of iron regulatory proteins and augmented tissue iron accumulation in the kidneys of both type 1 and type 2 diabetic mouse models. Iron accumulation in the kidneys of HFE knockout mice was associated with increase in serum and intrarenal renin expression. Induction of diabetes in HFE knockout mice using streptozotocin caused a much higher accumulation of renal iron and accelerated the progression of nephropathy compared with diabetic wild-type mice. Treatment of diabetic mice with the iron chelator deferiprone reversed the renin upregulation and reduced kidney injury. Thus, our results establish a new link between renal iron and RAS activity. Exploring the mechanisms of iron-induced RAS activation further may have a significant therapeutic impact on hypertension and DN.


Asunto(s)
Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Proteína de la Hemocromatosis/genética , Proteína de la Hemocromatosis/metabolismo , Sobrecarga de Hierro/genética , Sobrecarga de Hierro/metabolismo , Hierro/metabolismo , Riñón/metabolismo , Animales , Deferiprona/farmacología , Deferiprona/uso terapéutico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Progresión de la Enfermedad , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Renina/biosíntesis , Sistema Renina-Angiotensina/efectos de los fármacos
10.
Sci Rep ; 8(1): 3025, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445185

RESUMEN

Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Increased iron accumulation is associated with several degenerative diseases. However, there are no reports on the status of retinal iron or its implications in the pathogenesis of DR. In the present study, we found that retinas of type-1 and type-2 mouse models of diabetes have increased iron accumulation compared to non-diabetic retinas. We found similar iron accumulation in postmortem retinal samples from human diabetic patients. Further, we induced diabetes in HFE knockout (KO) mice model of genetic iron overload to understand the role of iron in the pathogenesis of DR. We found increased neuronal cell death, vascular alterations and loss of retinal barrier integrity in diabetic HFE KO mice compared to diabetic wildtype mice. Diabetic HFE KO mouse retinas also exhibited increased expression of inflammation and oxidative stress markers. Severity in the pathogenesis of DR in HFE KO mice was accompanied by increase in retinal renin expression mediated by G-protein-coupled succinate receptor GPR91. In light of previous reports implicating retinal renin-angiotensin system in DR pathogenesis, our results reveal a novel relationship between diabetes, iron and renin-angiotensin system, thereby unraveling new therapeutic targets for the treatment of DR.


Asunto(s)
Retinopatía Diabética/metabolismo , Sobrecarga de Hierro/metabolismo , Retina/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/patología , Hierro/efectos adversos , Hierro/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Renina/efectos de los fármacos , Renina/genética , Renina/metabolismo , Sistema Renina-Angiotensina , Estreptozocina/farmacología
11.
J Immunol ; 194(12): 5713-24, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25980011

RESUMEN

Inflammatory kidney disease is a major clinical problem that can result in end-stage renal failure. In this article, we show that Ab-mediated inflammatory kidney injury and renal disease in a mouse nephrotoxic serum nephritis model was inhibited by amino acid metabolism and a protective autophagic response. The metabolic signal was driven by IFN-γ-mediated induction of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity with subsequent activation of a stress response dependent on the eIF2α kinase general control nonderepressible 2 (GCN2). Activation of GCN2 suppressed proinflammatory cytokine production in glomeruli and reduced macrophage recruitment to the kidney during the incipient stage of Ab-induced glomerular inflammation. Further, inhibition of autophagy or genetic ablation of Ido1 or Gcn2 converted Ab-induced, self-limiting nephritis to fatal end-stage renal disease. Conversely, increasing kidney IDO1 activity or treating mice with a GCN2 agonist induced autophagy and protected mice from nephritic kidney damage. Finally, kidney tissue from patients with Ab-driven nephropathy showed increased IDO1 abundance and stress gene expression. Thus, these findings support the hypothesis that the IDO-GCN2 pathway in glomerular stromal cells is a critical negative feedback mechanism that limits inflammatory renal pathologic changes by inducing autophagy.


Asunto(s)
Aminoácidos/metabolismo , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/metabolismo , Autoanticuerpos/inmunología , Autofagia/inmunología , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/genética , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Ratones Noqueados , Podocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Estrés Fisiológico
12.
Nat Commun ; 6: 6910, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25908435

RESUMEN

Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas con Homeodominio LIM/genética , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/genética , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/genética , Animales , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Regulación hacia Abajo , Femenino , Humanos , Proteínas con Homeodominio LIM/metabolismo , Células MCF-7 , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Microscopía Fluorescente , Células Madre Neoplásicas/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
13.
Invest Ophthalmol Vis Sci ; 55(6): 3616-25, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24812553

RESUMEN

PURPOSE: Loss-of-function mutations in hemojuvelin (HJV) cause juvenile hemochromatosis, an iron-overload disease. Deletion of Hjv in mice results in excessive iron accumulation and morphologic changes in the retina. Here, we studied the retinal vasculature in Hjv(-/-) mice. METHODS: Age-matched wild-type and Hjv(-/-) mice were used for fluorescein angiography and preparation of retinal cryosections, flat-mounts, and trypsin-digested blood vessels. Retinal angiogenesis was monitored by immunofluorescent detection of isolectin-B4, endoglin, and VEGF. Retinal vasculogenesis was monitored by immunofluorescent detection of collagen IV. Reactive gliosis was assessed based on the expression of glial fibrillary acidic protein and vimentin and CD11b/c as markers for Müller cells and microglia. RESULTS: Between 18 and 24 months of age, retinas of Hjv(-/-) mice displayed marked disruptions in angiogenesis and vasculogenesis. Blood vessels in Hjv(-/-) mice were tortuous and dilated, with a decrease in the tight-junction protein occludin. There was also evidence of neovascularization in Hjv(-/-) mice with blood vessels appearing in the vitreous, which were leaky. There was reactive gliosis in these mice involving both Müller cells and microglia. Such changes were not detected at 2 weeks of age. Even at the age of 4 months, retinas of Hjv(-/-) mice were almost normal with changes just beginning to appear. Thus, the vascular changes in Hjv(-/-) mouse retinas represent an age-dependent phenomenon. CONCLUSIONS: Deletion of Hjv in mice leads to abnormal retinal angiogenesis/vasculogenesis, with proliferation of new, leaky blood vessels in the vitreous. These changes are accompanied with reactive gliosis involving Müller cells and microglia.


Asunto(s)
ADN/genética , Eliminación de Gen , Gliosis/genética , Hierro/metabolismo , Proteínas de la Membrana/genética , Neovascularización Retiniana/genética , Vasos Retinianos/patología , Animales , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Angiografía con Fluoresceína , Fondo de Ojo , Proteínas Ligadas a GPI , Gliosis/complicaciones , Gliosis/patología , Proteína de la Hemocromatosis , Proteínas Reguladoras del Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Neuroglía/metabolismo , Neuroglía/patología , Retina/metabolismo , Neovascularización Retiniana/etiología , Neovascularización Retiniana/patología , Vasos Retinianos/metabolismo
14.
Mol Vis ; 20: 561-74, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24791141

RESUMEN

PURPOSE: Matriptase-2 (also known as TMPRSS6) is a critical regulator of the iron-regulatory hormone hepcidin in the liver; matriptase-2 cleaves membrane-bound hemojuvelin and consequently alters bone morphogenetic protein (BMP) signaling. Hemojuvelin and hepcidin are expressed in the retina and play a critical role in retinal iron homeostasis. However, no information on the expression and function of matriptase-2 in the retina is available. The purpose of the present study was to examine the retinal expression of matriptase-2 and its role in retinal iron homeostasis. METHODS: RT-PCR, quantitative PCR (qPCR), and immunofluorescence were used to analyze the expression of matriptase-2 and other iron-regulatory proteins in the mouse retina. Polarized localization of matriptase-2 in the RPE was evaluated using markers for the apical and basolateral membranes. Morphometric analysis of retinas from wild-type and matriptase-2 knockout (Tmprss6(msk/msk) ) mice was also performed. Retinal iron status in Tmprss6(msk/msk) mice was evaluated by comparing the expression levels of ferritin and transferrin receptor 1 between wild-type and knockout mice. BMP signaling was monitored by the phosphorylation status of Smads1/5/8 and expression levels of Id1 while interleukin-6 signaling was monitored by the phosphorylation status of STAT3. RESULTS: Matriptase-2 is expressed in the mouse retina with expression detectable in all retinal cell types. Expression of matriptase-2 is restricted to the apical membrane in the RPE where hemojuvelin, the substrate for matriptase-2, is also present. There is no marked difference in retinal morphology between wild-type mice and Tmprss6(msk/msk) mice, except minor differences in specific retinal layers. The knockout mouse retina is iron-deficient, demonstrable by downregulation of the iron-storage protein ferritin and upregulation of transferrin receptor 1 involved in iron uptake. Hepcidin is upregulated in Tmprss6(msk/msk) mouse retinas, particularly in the neural retina. BMP signaling is downregulated while interleukin-6 signaling is upregulated in Tmprss6(msk/msk) mouse retinas, suggesting that the upregulaton of hepcidin in knockout mouse retinas occurs through interleukin-6 signaling and not through BMP signaling. CONCLUSIONS: The iron-regulatory serine protease matriptase-2 is expressed in the retina, and absence of this enzyme leads to iron deficiency and increased expression of hemojuvelin and hepcidin in the retina. The upregulation of hepcidin expression in Tmprss6(msk/msk) mouse retinas does not occur via BMP signaling but likely via the proinflammatory cytokine interleukin-6. We conclude that matriptase-2 is a critical participant in retinal iron homeostasis.


Asunto(s)
Homeostasis , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Retina/enzimología , Serina Endopeptidasas/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Membrana Celular/metabolismo , Ferritinas/metabolismo , Proteínas Ligadas a GPI , Proteína de la Hemocromatosis , Hepcidinas/metabolismo , Interleucina-6/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Transferrina/metabolismo , Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Serina Endopeptidasas/genética , Transducción de Señal , Regulación hacia Arriba
15.
Biochim Biophys Acta ; 1842(4): 603-12, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24462739

RESUMEN

Hypercholesterolemia and polymorphisms in the cholesterol exporter ABCA1 are linked to age-related macular degeneration (AMD). Excessive iron in retina also has a link to AMD pathogenesis. Whether these findings mean a biological/molecular connection between iron and cholesterol is not known. Here we examined the relationship between retinal iron and cholesterol using a mouse model (Hfe(-/-)) of hemochromatosis, a genetic disorder of iron overload. We compared the expression of the cholesterol efflux transporters ABCA1 and ABCG1 and cholesterol content in wild type and Hfe(-/-) mouse retinas. We also investigated the expression of Bdh2, the rate-limiting enzyme in the synthesis of the endogenous siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) in wild type and Hfe(-/-) mouse retinas, and the influence of this siderophore on ABCA1/ABCG1 expression in retinal pigment epithelium. We found that ABCA1 and ABCG1 were expressed in all retinal cell types, and that their expression was decreased in Hfe(-/-) retina. This was accompanied with an increase in retinal cholesterol content. Bdh2 was also expressed in all retinal cell types, and its expression was decreased in hemochromatosis. In ARPE-19 cells, 2,5-DHBA increased ABCA1/ABCG1 expression and decreased cholesterol content. This was not due to depletion of free iron because 2,5-DHBA (a siderophore) and deferiprone (an iron chelator) had opposite effects on transferrin receptor expression and ferritin levels. We conclude that iron is a regulator of cholesterol homeostasis in retina and that removal of cholesterol from retinal cells is impaired in hemochromatosis. Since excessive cholesterol is pro-inflammatory, hemochromatosis might promote retinal inflammation via cholesterol in AMD.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/fisiología , Transportadoras de Casetes de Unión a ATP/fisiología , Gentisatos/metabolismo , Hemocromatosis/metabolismo , Lipoproteínas/fisiología , Retina/metabolismo , Sideróforos/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Animales , Colesterol/metabolismo , Metilación de ADN , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/fisiología , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos BALB C
16.
Invest Ophthalmol Vis Sci ; 54(1): 63-71, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23169885

RESUMEN

PURPOSE: Hemochromatosis is a disorder of iron overload arising mostly from mutations in HFE. HFE is expressed in retinal pigment epithelium (RPE), and Hfe(-/-) mice develop age-related iron accumulation and retinal degeneration associated with RPE hyperproliferation. Here, the mechanism underlying the hyperproliferative phenotype in RPE was investigated. METHODS: Cellular senescence was monitored by ß-galactosidase activity. Gene expression was monitored by real-time PCR. Survivin was analyzed by Western blot and immunofluorescence. Migration and invasion were monitored using appropriate kits. Glucose transporters (GLUTs) were monitored by 3-O-methyl-D-glucose uptake. Histone deacetylases (HDACs) were studied by monitoring catalytic activity and acetylation status of histones H3/H4. RESULTS: Hfe(-/-) RPE cells exhibited slower senescence rate and higher survivin expression than wild type cells. Hfe(-/-) cells migrated faster and showed greater glucose uptake and increased expression of GLUTs. The expression of HDACs and DNA methyltransferase (DNMTs) also was increased. Similarly, RPE cells from hemojuvelin (Hjv)-knockout mice, another model of hemochromatosis, also had increased expression of GLUTs, HDACs, and DNMTs. The expression of Slc5a8 was decreased in Hfe(-/-) RPE cells, but treatment with a DNA methylation inhibitor restored the transporter expression, indicating involvement of DNA methylation in the silencing of Slc5a8 in Hfe(-/-) cells. CONCLUSIONS: RPE cells from iron-overloaded mice exhibit several features of tumor cells: decreased senescence, enhanced migration, increased glucose uptake, and elevated levels of HDACs and DNMTs. These features are seen in Hfe(-/-) RPE cells as well as in Hjv(-/-) RPE cells, providing a molecular basis for the hyperproliferative phenotype of Hfe(-/-) and Hjv(-/-) RPE cells.


Asunto(s)
Neoplasias del Ojo , Hemocromatosis , Antígenos de Histocompatibilidad Clase I/genética , Proteínas de la Membrana/genética , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/fisiopatología , Sistemas de Transporte de Aminoácidos/genética , Animales , Proteínas de Transporte de Catión/genética , Movimiento Celular/fisiología , Transformación Celular Neoplásica/patología , Senescencia Celular/fisiología , Metilación de ADN/fisiología , Progresión de la Enfermedad , Neoplasias del Ojo/genética , Neoplasias del Ojo/patología , Neoplasias del Ojo/fisiopatología , Femenino , Glucosa/farmacocinética , Hemocromatosis/genética , Hemocromatosis/patología , Hemocromatosis/fisiopatología , Proteína de la Hemocromatosis , Proteínas Inhibidoras de la Apoptosis/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos , Fenotipo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Cultivo Primario de Células , Proteínas Represoras/metabolismo , Survivin , Trasplante Heterólogo
17.
Biochem J ; 441(2): 599-608, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21943374

RESUMEN

Haemochromatosis is a genetic disorder of iron overload resulting from loss-of-function mutations in genes coding for the iron-regulatory proteins HFE (human leucocyte antigen-like protein involved in iron homoeostasis), transferrin receptor 2, ferroportin, hepcidin and HJV (haemojuvelin). Recent studies have established the expression of all of the five genes in the retina, indicating their importance in retinal iron homoeostasis. Previously, we demonstrated that HJV is expressed in RPE (retinal pigment epithelium), the outer and inner nuclear layers and the ganglion cell layer. In the present paper, we report on the consequences of Hjv deletion on the retina in mice. Hjv-/- mice at ≥18 months of age had increased iron accumulation in the retina with marked morphological damage compared with age-matched controls; these changes were not found in younger mice. The retinal phenotype in Hjv-/- mice included hyperplasia of RPE. We isolated RPE cells from wild-type and Hjv-/- mice and examined their growth patterns. Hjv-/- RPE cells were less senescent and exhibited a hyperproliferative phenotype. Hjv-/- RPE cells also showed up-regulation of Slc7a11 (solute carrier family 7 member 11 gene), which encodes the 'transporter proper' subunit xCT in the heterodimeric amino acid transporter xCT/4F2hc (cystine/glutamate exchanger). BMP6 (bone morphogenetic protein 6) could not induce hepcidin expression in Hjv-/- RPE cells, confirming that retinal cells require HJV for induction of hepcidin via BMP6 signalling. HJV is a glycosylphosphatidylinositol-anchored protein, and the membrane-associated HJV is necessary for BMP6-mediated activation of hepcidin promoter in RPE cells. Taken together, these results confirm the biological importance of HJV in the regulation of iron homoeostasis in the retina and in RPE.


Asunto(s)
Proteínas Reguladoras del Hierro/metabolismo , Hierro/farmacología , Proteínas de la Membrana/fisiología , Retina/metabolismo , Degeneración Retiniana/inducido químicamente , Epitelio Pigmentado de la Retina/metabolismo , Envejecimiento/fisiología , Sistema de Transporte de Aminoácidos y+/biosíntesis , Animales , Péptidos Catiónicos Antimicrobianos/biosíntesis , Proteína Morfogenética Ósea 6/farmacología , Proteínas Ligadas a GPI , Proteína de la Hemocromatosis , Hepcidinas , Antígenos de Histocompatibilidad Clase I/genética , Hierro/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/patología
18.
J Pharm Sci ; 101(1): 154-63, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21905028

RESUMEN

The sodium-coupled oligopeptide transporters 1 and 2 (SOPT1 and SOPT2) transport peptides consisting of at least five amino acids and show potential for the delivery of therapeutically relevant peptides/peptidomimetics. Here, we examined the expression of these two transporters in the retinal neuronal cell line RGC-5. These cells showed robust uptake activity for the synthetic pentapeptide DADLE ([D-Ala(2),D-Leu(5)]-Enkephalin). The uptake was Na(+) dependent and saturable (K(t), 6.2 ± 0.6 µM). A variety of oligopeptides inhibited DADLE uptake. The uptake of the competing oligopeptides was directly demonstrated with fluorescein isothiocyanate-labeled Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys in RGC-5 cells and primary mouse retinal ganglion cells. The characteristics of DADLE uptake matched those of SOPT2. We then examined the expression of SOPT1 in these cells with deltorphin II (Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH(2)) as the substrate and found that RGC-5 cells also expressed SOPT1. As it is already known that SOPT1 is expressed in the neuronal cell line SK-N-SH, we investigated SOPT2 expression in these cells to determine whether the presence of both oligopeptide transporters is a common feature of neuronal cells. These studies showed that SK-N-SH cells also expressed SOPT2. This constitutes the first report on the functional characterization of SOPT1 and SOPT2 in retinal neuronal cells and on the expression of SOPT2 in nonretinal neuronal cells.


Asunto(s)
Leucina Encefalina-2-Alanina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Péptidos Opioides/metabolismo , Células Ganglionares de la Retina/metabolismo , Aminoácidos/metabolismo , Animales , Transporte Biológico , Línea Celular , Cinética , Ratones , Oligopéptidos/metabolismo , Sodio/metabolismo , Especificidad por Sustrato
19.
Invest Ophthalmol Vis Sci ; 52(12): 9279-86, 2011 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-22058337

RESUMEN

PURPOSE: FLVCR, BCRP, and PCFT/HCP-1 represent the three heme transporters identified thus far in mammalian cells, but there is very little known about their expression and regulation in the retina. In this study, the expression of these transporters in mouse retina and retinal pigment epithelium (RPE) and their regulation in the iron-overload disease hemochromatosis were examined. METHODS: The expression of FLVCR, BCRP, and PCFT in mouse retina and primary mouse RPE cells was studied by RT-PCR and immunofluorescence. Polarized localization of the transporters in RPE was studied by co-localization using a specific marker of the RPE apical membrane. Uptake of heme in primary RPE cells was determined using zinc-mesoporphyrin, a fluorescent heme analogue. The regulation of heme transporters by iron overload was studied in two genetic models of hemochromatosis (HFE-null mouse and HJV-null mouse) and in two nongenetic models of iron overload (cytomegalovirus infection and treatment with ferric ammonium citrate). RESULTS: All three heme transporters were expressed in the retina and RPE. In the RPE, the expression of FLVCR was restricted to the apical membrane, and the expression of BCRP and PCFT was restricted to the basolateral membrane. In all cases of iron overload, the expression of FLVCR and PCFT was upregulated and that of BCRP was downregulated. CONCLUSIONS: Hemochromatosis is associated not only with excessive accumulation of free iron in the retina and RPE but also with excessive accumulation of heme. Since heme is toxic at high levels, as is free iron, heme-induced oxidative damage may also play a role in hemochromatosis-associated retinal pathology.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/fisiología , Hemocromatosis/genética , Proteínas de Transporte de Membrana/genética , Transportador de Folato Acoplado a Protón/genética , Receptores Virales/genética , Epitelio Pigmentado de la Retina/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Western Blotting , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Hemo/metabolismo , Hemocromatosis/metabolismo , Infecciones por Herpesviridae/metabolismo , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Metaloporfirinas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Muromegalovirus/fisiología , Transportador de Folato Acoplado a Protón/metabolismo , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Virales/metabolismo , Retina/metabolismo
20.
Cancer Res ; 71(21): 6654-64, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21920899

RESUMEN

The NAD-dependent histone deacetylase silent information regulator 1 (SIRT1) is overexpressed and catalytically activated in a number of human cancers, but recent studies have actually suggested that it may function as a tumor suppressor and metastasis inhibitor in vivo. In breast cancer, SIRT1 stabilization has been suggested to contribute to the oncogenic potential of the estrogen receptor α (ERα), but SIRT1 activity has also been associated with ERα deacetylation and inactivation. In this study, we show that SIRT1 is critical for estrogen to promote breast cancer. ERα physically interacted and functionally cooperated with SIRT1 in breast cancer cells. ERα also bound to the promoter for SIRT1 and increased its transcription. SIRT1 expression induced by ERα was sufficient to activate antioxidant and prosurvival genes in breast cancer cells, such as catalase and glutathione peroxidase, and to inactivate tumor suppressor genes such as cyclin G2 (CCNG2) and p53. Moreover, SIRT1 inactivation eliminated estrogen/ERα-induced cell growth and tumor development, triggering apoptosis. Taken together, these results indicated that SIRT1 is required for estrogen-induced breast cancer growth. Our findings imply that the combination of SIRT1 inhibitors and antiestrogen compounds may offer more effective treatment strategies for breast cancer.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Receptor alfa de Estrógeno/fisiología , Estrógenos/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias Hormono-Dependientes/fisiopatología , Transducción de Señal/fisiología , Sirtuina 1/fisiología , Acetilación , Animales , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Apoptosis/fisiología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Células Cultivadas , Células Epiteliales/metabolismo , Moduladores de los Receptores de Estrógeno/farmacología , Moduladores de los Receptores de Estrógeno/uso terapéutico , Receptor alfa de Estrógeno/química , Femenino , Regulación Neoplásica de la Expresión Génica , Glutatión Peroxidasa/biosíntesis , Glutatión Peroxidasa/genética , Humanos , Peroxidación de Lípido , Ratones , Ratones Desnudos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias Hormono-Dependientes/tratamiento farmacológico , Neoplasias Hormono-Dependientes/genética , Neoplasias Hormono-Dependientes/patología , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Sirtuina 1/química , Organismos Libres de Patógenos Específicos , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA