Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Oncol ; 37: 101750, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572498

RESUMEN

Cancerous tumors are among the most fatal diseases worldwide, claiming nearly 10 million lives in 2020. Due to their complex and dynamic nature, modeling tumors accurately is a challenging task. Current models suffer from inadequate translation between in vitro and in vivo results, primarily due to the isotropic nature of tumors and their microenvironment's relationship. To address these limitations, hydrogel-based 3D bioprinting is emerging as a promising approach to mimic cancer development and behavior. It provides precise control over individual elements' size and distribution within the cancer microenvironment and enables the use of patient-derived tumor cells, rather than commercial lines. Consequently, hydrogel bioprinting is expected to become a state-of-the-art technique for cancer research. This manuscript presents an overview of cancer statistics, current modeling methods, and their limitations. Additionally, we highlight the significance of bioprinting, its applications in cancer modeling, and the importance of hydrogel selection. We further explore the current state of creating models for the five deadliest cancers using 3D bioprinting. Finally, we discuss current trends and future perspectives on the clinical use of cancer modeling using hydrogel bioprinting.

2.
Materials (Basel) ; 16(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176416

RESUMEN

Septoplasty is a widely used method in treating deviated septum. Although it is successfully implemented, there are problems with excessive bleeding, septal perforation, or infections. The use of anatomically shaped implants could help overcome these problems. This paper focuses on assessing the possibility of the usage of a nasal septum cartilage implant 3D printed from various market-available filaments. Five different types of laments were used, two of which claim to be suitable for medical use. A combination of modeling, mechanical (bending, compression), structural (FTIR), thermal (DSC, MFR), surface (contact angle), microscopic (optical), degradation (2 M HCl, 5 M NaOH, and 0.01 M PBS), printability, and cell viability (MTT) analyses allowed us to assess the suitability of materials for manufacturing implants. Bioflex had the most applicable properties among the tested materials, but despite the overall good performance, cell viability studies showed toxicity of the material in MTT test. The results of the study show that selected filaments were not suitable for nasal cartilage implants. The poor cell viability of Bioflex could be improved by surface modification. Further research on biocompatible elastic materials for 3D printing is needed either by the synthesis of new materials or by modifying existing ones.

3.
Adv Med Sci ; 67(2): 269-282, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35841880

RESUMEN

PURPOSE: Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. MATERIALS AND METHODS: Six Composite Porous Matrices (CPMs) based on polyurethane (PUR) in alliance with polylactide (PLAs) and poly(vinyl alcohol) (PVA) were prepared and analyzed using optical microscopy. Three different types of hydrogels and their Ciprofloxacin (Cipro) modified variants' ratios were prepared and analyzed using FTIR, SEM and EDX techniques. Six Hybrid Cipro-Releasing Hydrogel Wound Dressings (H-CRWDs) were also prepared and underwent short-term degradation, Cipro release, microbiology and cell viability measurements. RESULTS: Average porosity of CPMs was in the range of 69-81%. The pore size of the obtained CPMs was optimal for skin regeneration. Short-term degradation studies revealed degradability in physiological conditions regardless of sample type. A meaningful release was also observed even in short time (21.76 â€‹± â€‹0.64 â€‹µg/mL after 15 â€‹min). Microbiological tests showed visible inhibition zones. Cell viability tests proved that the obtained H-CRWDs were biocompatible (over 85% of cells). CONCLUSIONS: A promising hybrid wound dressing was labeled. Simple and cost-effective methods were used to obtain microbiologically active and biocompatible dressings. The results were of importance for the design and development of acceptable solutions in the management of chronic wounds of high potential for infection.


Asunto(s)
Ciprofloxacina , Poliuretanos , Ciprofloxacina/farmacología , Poliuretanos/farmacología , Alcohol Polivinílico/farmacología , Cicatrización de Heridas , Vendajes , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Polímeros/farmacología
4.
Materials (Basel) ; 14(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34683646

RESUMEN

This paper addresses the potential application of flexible thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) compositions as a material for the production of antibacterial wound dressings using the Fused Filament Fabrication (FFF) 3D printing method. On the market, there are medical-grade polyurethane filaments available, but few of them have properties required for the fabrication of wound dressings, such as flexibility and antibacterial effects. Thus, research aimed at the production, characterization and modification of filaments based on different TPU/PLA compositions was conducted. The combination of mechanical (tensile, hardness), structural (FTIR), microscopic (optical and SEM), degradation (2 M HCl, 5 M NaOH, and 0.1 M CoCl2 in 20% H2O2) and printability analysis allowed us to select the most promising composition for further antibacterial modification (COMP-7,5PLA). The thermal stability of the chosen antibiotic-amikacin-was tested using processing temperature and HPLC. Two routes were used for the antibacterial modification of the selected filament-post-processing modification (AMI-1) and modification during processing (AMI-2). The antibacterial activity and amikacin release profiles were studied. The postprocessing modification method turned out to be superior and suitable for wound dressing fabrication due to its proven antimicrobial activity against E. coli, P. fluorescens, S. aureus and S. epidermidis bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...