Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4957, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400653

RESUMEN

Influenza during pregnancy can affect the health of offspring in later life, among which neurocognitive disorders are among the best described. Here, we investigate whether maternal influenza infection has adverse effects on immune responses in offspring. We establish a two-hit mouse model to study the effect of maternal influenza A virus infection (first hit) on vulnerability of offspring to heterologous infections (second hit) in later life. Offspring born to influenza A virus infected mothers are stunted in growth and more vulnerable to heterologous infections (influenza B virus and MRSA) than those born to PBS- or poly(I:C)-treated mothers. Enhanced vulnerability to infection in neonates is associated with reduced haematopoetic development and immune responses. In particular, alveolar macrophages of offspring exposed to maternal influenza have reduced capacity to clear second hit pathogens. This impaired pathogen clearance is partially reversed by adoptive transfer of alveolar macrophages from healthy offspring born to uninfected dams. These findings suggest that maternal influenza infection may impair immune ontogeny and increase susceptibility to early life infections of offspring.


Asunto(s)
Infecciones Bacterianas/inmunología , Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/virología , Parto , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Hematopoyesis , Humanos , Gripe Humana/inmunología , Pulmón/inmunología , Macrófagos Alveolares , Ratones , Ratones Endogámicos C57BL , Madres , Poli I-C , Embarazo
2.
Emerg Microbes Infect ; 8(1): 1324-1336, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31503518

RESUMEN

Avian influenza A viruses (AIV) of the H7 subtype continue to evolve posing a pandemic threat. However, molecular markers of H7N7 AIV pathogenicity and transmission in mammals remain poorly understood. In this study, we performed a systematic in vitro and in vivo analysis by comparing an H7N7 highly pathogenic AIV and its ferret adapted variant. Passaging an H7N7 AIV in ferrets led to six mutations in genes encoding the viral polymerase complex and the viral surface proteins. Here, we show that mutations in the H7 hemagglutinin gene cause increased pathogenicity in mice. Contact transmission between guinea pigs required additional mutations in the gene encoding the polymerase subunit PB1. Thus, particular vigilance is required with respect to HA and PB1 mutations as predictive molecular markers to assess the pandemic risk posed by emerging H7 avian influenza viruses.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N7 del Virus de la Influenza A/patogenicidad , Proteínas Mutantes/genética , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Proteínas Virales/genética , Animales , Modelos Animales de Enfermedad , Hurones , Cobayas , Subtipo H7N7 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/patología , Pase Seriado , Factores de Virulencia/genética
3.
Nat Microbiol ; 3(10): 1161-1174, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30202017

RESUMEN

Congenital Zika virus (ZIKV) syndrome may cause fetal microcephaly in ~1% of affected newborns. Here, we investigate whether the majority of clinically inapparent newborns might suffer from long-term health impairments not readily visible at birth. Infection of immunocompetent pregnant mice with high-dose ZIKV caused severe offspring phenotypes, such as fetal death, as expected. By contrast, low-dose (LD) maternal ZIKV infection resulted in reduced fetal birth weight but no other obvious phenotypes. Male offspring born to LD ZIKV-infected mothers had increased testosterone (TST) levels and were less likely to survive in utero infection compared to their female littermates. Males also presented an increased number of immature neurons in apical and basal hippocampal dendrites, while female offspring had immature neurons in basal dendrites only. Moreover, male offspring with high but not very high (storm) TST levels were more likely to suffer from learning and memory impairments compared to females. Future studies are required to understand the impact of TST on neuropathological and neurocognitive impairments in later life. In summary, increased sex-specific vigilance is required in countries with high ZIKV prevalence, where impaired neurodevelopment may be camouflaged by a healthy appearance at birth.


Asunto(s)
Trastornos Neurocognitivos/etiología , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika/complicaciones , Virus Zika , Animales , Animales Recién Nacidos , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Discapacidades para el Aprendizaje/etiología , Masculino , Trastornos Neurocognitivos/patología , Trastornos Neurocognitivos/fisiopatología , Insuficiencia Placentaria , Embarazo , Factores Sexuales , Testosterona/sangre , Infección por el Virus Zika/transmisión
4.
PLoS One ; 12(5): e0176597, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28493964

RESUMEN

The cellular serine protease TMPRSS2, a member of the type II transmembrane serine protease (TTSP) family, cleaves and activates the hemagglutinin of influenza A viruses (FLUAV) in cell culture and is essential for spread of diverse FLUAV in mice. Non-human primates (NHP), in particular rhesus and cynomolgus macaques, serve as animal models for influenza and experimental FLUAV infection of common marmosets has recently also been reported. However, it is currently unknown whether the NHP orthologues of human TMPRSS2 cleave and activate FLUAV hemagglutinin and contribute to viral spread in respiratory tissue. Here, we cloned and functionally analyzed the macaque and marmoset orthologues of human TMPRSS2. In addition, we analyzed the macaque orthologues of human TMPRSS4 and HAT, which also belong to the TTSP family. We found that all NHP orthologues of human TMPRSS2, TMPRSS4 and HAT cleave and activate HA upon directed expression and provide evidence that endogenous TMPRSS2 is expressed in the respiratory epithelium of rhesus macaques. Finally, we demonstrate that a serine protease inhibitor active against TMPRSS2 suppresses FLUAV spread in precision-cut lung slices of human, macaque and marmoset origin. These results indicate that FLUAV depends on serine protease activity for spread in diverse NHP and in humans. Moreover, our findings suggest that macaques and marmosets may serve as models to study FLUAV activation by TMPRSS2 in human patients.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/metabolismo , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Células HEK293 , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Macaca mulatta , Primates , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Transfección
5.
J Virol ; 90(24): 11075-11086, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27707924

RESUMEN

The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. IMPORTANCE: Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The present study shows that LLOV, like EBOV, counteracts the antiviral effector protein tetherin via its glycoprotein (GP), suggesting that tetherin does not pose a defense against LLOV spread in humans. Moreover, our work identifies the GP1 subunit of EBOV GP, in particular an intact receptor-binding domain, as critical for tetherin counteraction and provides evidence that antibodies directed against GP1 can interfere with tetherin counteraction.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Antígenos CD/inmunología , Glicoproteínas/inmunología , Subunidades de Proteína/inmunología , Proteínas del Envoltorio Viral/inmunología , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Antígenos CD/química , Antígenos CD/genética , Ebolavirus/química , Ebolavirus/efectos de los fármacos , Ebolavirus/genética , Ebolavirus/inmunología , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Regulación de la Expresión Génica , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/química , Glicoproteínas/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Polisacáridos/inmunología , Polisacáridos/metabolismo , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/genética , Alineación de Secuencia , Transducción de Señal , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Internalización del Virus , Liberación del Virus , Replicación Viral
6.
J Infect Dis ; 212 Suppl 2: S210-8, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26034199

RESUMEN

Ebolaviruses are highly pathogenic in humans and nonhuman primates and pose a severe threat to public health. The interferon-induced transmembrane (IFITM) proteins can restrict entry of ebolaviruses, influenza A viruses, and other enveloped viruses. However, the breadth and mechanism of the antiviral activity of IFITM proteins are incompletely understood. Here, we employed ebolavirus glycoprotein-pseudotyped vectors and ebolavirus-like particles to address this question. We show that IFITM proteins inhibit the cellular entry of diverse ebolaviruses and demonstrate that type I interferon induces IFITM protein expression in macrophages, major viral targets. Moreover, we show that IFITM proteins block entry of influenza A viruses and ebolaviruses by different mechanisms and provide evidence that antibodies and IFITM proteins can synergistically inhibit cellular entry of ebolaviruses. These results provide insights into the role of IFITM proteins in infection by ebolaviruses and suggest a mechanism by which antibodies, though poorly neutralizing in vitro, might contribute to viral control in vivo.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Línea Celular , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Macrófagos/metabolismo , Macrófagos/virología , Monocitos/metabolismo , Monocitos/virología , Proteínas Virales/metabolismo , Internalización del Virus
7.
J Virol ; 89(18): 9178-88, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26109730

RESUMEN

UNLABELLED: The expression of the antiviral host cell factor tetherin is induced by interferon and can inhibit the release of enveloped viruses from infected cells. The Vpu protein of HIV-1 antagonizes the antiviral activity of tetherin, and tetherin antagonists with Vpu-like activity have been identified in other viruses. In contrast, it is incompletely understood whether tetherin inhibits influenza A virus (FLUAV) release and whether FLUAV encodes tetherin antagonists. Here, we show that release of several laboratory-adapted FLUAV strains and a seasonal FLUAV strain is inhibited by tetherin, while pandemic FLUAV A/Hamburg/4/2009 is resistant. Studies with a virus-like particle system and analysis of reassortant viruses provided evidence that the viral hemagglutinin (HA) is an important determinant of tetherin antagonism but requires the presence of its cognate neuraminidase (NA) to inhibit tetherin. Finally, tetherin antagonism by FLUAV was dependent on the virion context, since retrovirus release from tetherin-positive cells was not rescued, and correlated with an HA- and NA-dependent reduction in tetherin expression. In sum, our study identifies HA and NA proteins of certain pandemic FLUAV as tetherin antagonists, which has important implications for understanding FLUAV pathogenesis. IMPORTANCE: Influenza A virus (FLUAV) infection is responsible for substantial global morbidity and mortality, and understanding how the virus evades the immune defenses of the host may uncover novel targets for antiviral intervention. Tetherin is an antiviral effector molecule of the innate immune system which can contribute to control of viral invasion. However, it has been unclear whether FLUAV is inhibited by tetherin and whether these viruses encode tetherin-antagonizing proteins. Our observation that several pandemic FLUAV strains can counteract tetherin via their HA and NA proteins identifies these proteins as novel tetherin antagonists and indicates that HA/NA-dependent inactivation of innate defenses may contribute to the efficient spread of pandemic FLUAV.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Innata , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Neuraminidasa/inmunología , Antígenos CD/genética , Antígenos CD/inmunología , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/inmunología , Células HEK293 , VIH-1/genética , VIH-1/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Neuraminidasa/genética , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/inmunología
8.
J Infect Dis ; 212 Suppl 2: S247-57, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25877552

RESUMEN

Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)-driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells.


Asunto(s)
Ebolavirus/metabolismo , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Macrófagos/virología , Factores de Virulencia/metabolismo , Línea Celular , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Lectinas/metabolismo , Internalización del Virus
9.
J Infect Dis ; 212 Suppl 2: S172-80, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25840443

RESUMEN

The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors.


Asunto(s)
Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Animales , Anticuerpos Neutralizantes/inmunología , Antivirales/farmacología , Células COS , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , República Democrática del Congo/epidemiología , Ebolavirus/efectos de los fármacos , Ebolavirus/inmunología , Ebolavirus/metabolismo , Euphorbiaceae , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/inmunología , Humanos , Células Jurkat , Macaca mulatta , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Sierra Leona/epidemiología , Células Vero , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Internalización del Virus
10.
J Infect Dis ; 211(6): 889-97, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25057042

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) infection is associated with a high case-fatality rate, and the potential pandemic spread of the virus is a public health concern. The spike protein of MERS-CoV (MERS-S) facilitates viral entry into host cells, which depends on activation of MERS-S by cellular proteases. Proteolytic activation of MERS-S during viral uptake into target cells has been demonstrated. However, it is unclear whether MERS-S is also cleaved during S protein synthesis in infected cells and whether cleavage is required for MERS-CoV infectivity. Here, we show that MERS-S is processed by proprotein convertases in MERS-S-transfected and MERS-CoV-infected cells and that several RXXR motifs located at the border between the surface and transmembrane subunit of MERS-S are required for efficient proteolysis. However, blockade of proprotein convertases did not impact MERS-S-dependent transduction of target cells expressing high amounts of the viral receptor, DPP4, and did not modulate MERS-CoV infectivity. These results show that MERS-S is a substrate for proprotein convertases and demonstrate that processing by these enzymes is dispensable for S protein activation. Efforts to inhibit MERS-CoV infection by targeting host cell proteases should therefore focus on enzymes that process MERS-S during viral uptake into target cells.


Asunto(s)
Coronavirus/fisiología , Proproteína Convertasas/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Datos de Secuencia Molecular , Inhibidores de Proteasas/farmacología , Procesamiento Proteico-Postraduccional , Proteolisis , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus
11.
Viruses ; 6(4): 1654-71, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24721789

RESUMEN

The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs) of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.


Asunto(s)
Ebolavirus/fisiología , Glicoproteínas/metabolismo , Interacciones Huésped-Patógeno , Marburgvirus/fisiología , Proteínas Virales/metabolismo , Antígenos CD , Línea Celular , Análisis Mutacional de ADN , Ebolavirus/genética , Proteínas Ligadas a GPI/antagonistas & inhibidores , Glicoproteínas/genética , Humanos , Marburgvirus/genética , Proteínas Virales/genética
12.
J Biol Chem ; 288(34): 24465-79, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23846684

RESUMEN

FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-ß, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/ß cleft, with bI close to subunit α, whereas bII is proximal to subunit ß. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-ß, α-bI-bII-ß, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética
13.
Retrovirology ; 10: 48, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23634812

RESUMEN

BACKGROUND: Platelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear. RESULTS: We found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity. CONCLUSIONS: Release of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens.


Asunto(s)
Linfocitos T CD4-Positivos/virología , VIH-1/inmunología , VIH-1/fisiología , Activación Plaquetaria , Factor Plaquetario 4/inmunología , Internalización del Virus/efectos de los fármacos , Células Cultivadas , Humanos
14.
PLoS One ; 7(8): e43337, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952667

RESUMEN

The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV) from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV) also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN) response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.


Asunto(s)
Antígenos CD/biosíntesis , Regulación Viral de la Expresión Génica , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Virus de la Influenza A/metabolismo , Interferones/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Línea Celular Tumoral , Membrana Celular/virología , Citometría de Flujo/métodos , Proteínas Ligadas a GPI/biosíntesis , Células HEK293 , VIH-1/metabolismo , Células HeLa , Humanos , Plásmidos/metabolismo , Virión/metabolismo
15.
Virology ; 433(1): 73-84, 2012 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-22874069

RESUMEN

Many SIV isolates can employ the orphan receptor GPR15 as coreceptor for efficient entry into transfected cell lines, but the role of endogenously expressed GPR15 in SIV cell tropism is largely unclear. Here, we show that several human B and T cell lines express GPR15 on the cell surface, including the T/B cell hybrid cell line CEMx174, and that GPR15 expression is essential for SIV infection of CEMx174 cells. In addition, GPR15 expression was detected on subsets of primary human CD4(+), CD8(+) and CD19(+) peripheral blood mononuclear cells (PBMCs), respectively. However, GPR15(+) PBMCs were not efficiently infected by HIV and SIV, including cells from individuals homozygous for the defective Δ32 ccr5 allele. These results suggest that GPR15 is coexpressed with CD4 on PBMCs but that infection of CD4(+), GPR15(+) cells is not responsible for the well documented ability of SIV to infect CCR5(-) blood cells.


Asunto(s)
Linfocitos B/virología , Receptores CCR5/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Péptidos/genética , Receptores Virales/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Linfocitos T/virología , Antígenos CD/metabolismo , Linfocitos B/metabolismo , Antagonistas de los Receptores CCR5 , Línea Celular , Humanos , ARN Interferente Pequeño/genética , Receptores CCR5/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/antagonistas & inhibidores , Receptores de Péptidos/metabolismo , Receptores Virales/antagonistas & inhibidores , Receptores Virales/metabolismo , Linfocitos T/metabolismo , Transfección , Tropismo Viral/fisiología , Internalización del Virus , Replicación Viral/fisiología
16.
Virology ; 424(1): 3-10, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22222211

RESUMEN

Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation.


Asunto(s)
Catepsina B/metabolismo , Catepsina L/metabolismo , Ebolavirus/fisiología , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/enzimología , Macrófagos/enzimología , Marburgvirus/fisiología , Serina Endopeptidasas/genética , Proteínas Virales/metabolismo , Internalización del Virus , Catepsina B/genética , Catepsina L/genética , Línea Celular , Ebolavirus/genética , Regulación Enzimológica de la Expresión Génica , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Macrófagos/virología , Marburgvirus/genética , Serina Endopeptidasas/metabolismo , Proteínas Virales/genética
17.
J Infect Dis ; 204 Suppl 3: S840-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21987760

RESUMEN

Infection with Ebola virus (EBOV) causes hemorrhagic fever in humans with high case-fatality rates. The EBOV-glycoprotein (EBOV-GP) facilitates viral entry and promotes viral release from human cells. African fruit bats are believed not to develop disease upon EBOV infection and have been proposed as a natural reservoir of EBOV. We compared EBOV-GP interactions with human cells and cells from African fruit bats. We found that susceptibility to EBOV-GP-dependent infection was not limited to bat cells from potential reservoir species, and we observed that GP displayed similar biological properties in human and bat cells. The only exception was GP localization, which was to a greater extent intracellular in bat cells as compared to human cells. Collectively, our results suggest that GP interactions with fruit bat and human cells are similar and do not limit EBOV tropism for certain bat species.


Asunto(s)
Quirópteros , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Proteínas Virales/metabolismo , Animales , Células Cultivadas , Cricetinae , Reservorios de Enfermedades , Regulación Viral de la Expresión Génica/fisiología , Humanos , Especificidad de la Especie , Replicación Viral
18.
J Virol ; 85(24): 13363-72, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21994442

RESUMEN

The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients.


Asunto(s)
Interacciones Huésped-Patógeno , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Proteínas del Envoltorio Viral/metabolismo , Enzima Convertidora de Angiotensina 2 , Línea Celular , Expresión Génica , Humanos , Peptidil-Dipeptidasa A/biosíntesis , Proteolisis , Receptores Virales/biosíntesis , Glicoproteína de la Espiga del Coronavirus
19.
J Virol ; 85(9): 4122-34, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325420

RESUMEN

The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion.


Asunto(s)
Interacciones Huésped-Patógeno , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Western Blotting , Línea Celular , Humanos , Inmunidad Humoral , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA