Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32054087

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease in which excessive amount of lipids is accumulated as droplets in hepatocytes. Recently, cumulative evidences suggested that a sustained de novo lipogenesis can play an important role in NAFLD. Dysregulated expression of lipogenic genes, including ATP-citrate lyase (ACLY), has been found in liver diseases associated with lipid accumulation. ACLY is a ubiquitous cytosolic enzyme positioned at the intersection of nutrients catabolism and cholesterol and fatty acid biosyntheses. In the present study, the molecular mechanism of ACLY expression in a cell model of steatosis has been reported. We identified an internal ribosome entry site (IRES) in the 5' untranslated region of the ACLY mRNA, that can support an efficient mRNA translation through a Cap-independent mechanism. In steatotic HepG2 cells, ACLY expression was up-regulated through IRES-mediated translation. Since it has been demonstrated that lipid accumulation in cells induces endoplasmic reticulum (ER) stress, the involvement of this cellular pathway in the translational regulation of ACLY has been also evaluated. Our results showed that ACLY expression was increased in ER-stressed cells, through IRES-mediated translation of ACLY mRNA. A potential role of the Cap-independent translation of ACLY in NAFLD has been discussed.


Asunto(s)
ATP Citrato (pro-S)-Liasa/genética , Hepatocitos/metabolismo , Lipogénesis , Biosíntesis de Proteínas , ARN Mensajero/genética , Regiones no Traducidas 5' , ATP Citrato (pro-S)-Liasa/metabolismo , Estrés del Retículo Endoplásmico , Células Hep G2 , Humanos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/metabolismo
2.
Molecules ; 25(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906370

RESUMEN

l-Carnitine is an amino acid derivative widely known for its involvement in the transport of long-chain fatty acids into the mitochondrial matrix, where fatty acid oxidation occurs. Moreover, l-Carnitine protects the cell from acyl-CoA accretion through the generation of acylcarnitines. Circulating carnitine is mainly supplied by animal-based food products and to a lesser extent by endogenous biosynthesis in the liver and kidney. Human muscle contains high amounts of carnitine but it depends on the uptake of this compound from the bloodstream, due to muscle inability to synthesize carnitine. Mitochondrial fatty acid oxidation represents an important energy source for muscle metabolism particularly during physical exercise. However, especially during high-intensity exercise, this process seems to be limited by the mitochondrial availability of free l-carnitine. Hence, fatty acid oxidation rapidly declines, increasing exercise intensity from moderate to high. Considering the important role of fatty acids in muscle bioenergetics, and the limiting effect of free carnitine in fatty acid oxidation during endurance exercise, l-carnitine supplementation has been hypothesized to improve exercise performance. So far, the question of the role of l-carnitine supplementation on muscle performance has not definitively been clarified. Differences in exercise intensity, training or conditioning of the subjects, amount of l-carnitine administered, route and timing of administration relative to the exercise led to different experimental results. In this review, we will describe the role of l-carnitine in muscle energetics and the main causes that led to conflicting data on the use of l-carnitine as a supplement.


Asunto(s)
Carnitina/análogos & derivados , Carnitina/metabolismo , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Carnitina/administración & dosificación , Carnitina/biosíntesis , Carnitina/química , Carnitina/farmacología , Carnitina O-Palmitoiltransferasa/metabolismo , Suplementos Dietéticos/efectos adversos , Ejercicio Físico/fisiología , Humanos , Metilaminas/metabolismo , Músculo Esquelético/efectos de los fármacos , Oxidación-Reducción
3.
Int J Biochem Cell Biol ; 117: 105618, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31542428

RESUMEN

Quercetin (Que), a widely distributed flavonoid in the human diet, exerts neuroprotective action because of its property to antagonize oxidative stress. Here, we investigated the effects of Que on lipid synthesis in C6 glioma cells. A rapid Que-induced inhibition of cholesterol and, to a lesser extent, of fatty acid synthesis from [1-14C]acetate was observed. The maximum decrease was detected at the level of palmitate, the end product of de novo fatty acid synthesis. The effect of Que on the enzyme activities of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS), the two enzymes of this pathway, was investigated directly in situ in permeabilized C6 cells. An inhibitory effect on ACC1 was observed after 4 h of 25 µM Que treatment, while FAS activity was not affected. A reduction of polar lipid biosynthesis was also detected. A remarkable decrease of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) activity, regulatory enzyme of cholesterol synthesis, was evidenced. Expression studies demonstrated that Que acts at transcriptional level, by reducing the mRNA abundance and protein amount of ACC1 and HMGCR. Deepening the molecular mechanism, we found that Que decreased the expression of SREBP-1 and SREBP-2, transcriptional factors representing the main regulators of de novo fatty acid and cholesterol synthesis, respectively. Que also reduced the nuclear content of ChREBP, a glucose-induced transcription factor involved in the regulation of lipogenic genes. Our results represent the first evidence that a direct and rapid downregulatory effect of Que on cholesterol and de novo fatty acid synthesis is elicited in C6 cells.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Glioma/metabolismo , Quercetina/antagonistas & inhibidores , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Humanos , Ratas
4.
FASEB J ; 33(1): 1428-1439, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133327

RESUMEN

It is widely accepted that chronic stress may alter the homeostatic mechanisms of body weight control. In this study, we followed the metabolic changes occurring in mice when chronic stress caused by psychosocial defeat (CPD) is associated with ad libitum exposure to a palatable high-fat diet (HFD). In this model, CPD mice consumed more HFD than unstressed (Un) mice without gaining body weight. We focused on metabolic processes involved in weight control, such as de novo lipogenesis (DNL), fatty acid ß-oxidation (FAO), and thermogenesis. The activity and expression of DNL enzymes were reduced in the liver and white adipose tissue of mice consuming the HFD. Such effects were particularly evident in stressed mice. In both CPD and Un mice, HFD consumption increased the hepatic expression of the mitochondrial FAO enzyme carnitine palmitoyltransferase-1. In the liver of mice consuming the HFD, stress exposure prevented accumulation of triacylglycerols; however, accumulation of triacylglycerols was observed in Un mice under the same dietary regimen. In brown adipose tissue, stress increased the expression of uncoupling protein-1, which is involved in energy dissipation, both in HFD and control diet-fed mice. We consider increased FAO and energy dissipation responsible for the antiobesity effect seen in CPD/HFD mice. However, CPD associated with HFD induced hepatic oxidative stress.-Giudetti, A. M., Testini, M., Vergara, D., Priore, P., Damiano, F., Gallelli, C. A., Romano, A., Villani, R., Cassano, T., Siculella, L., Gnoni, G. V., Moles, A., Coccurello, R., Gaetani, S. Chronic psychosocial defeat differently affects lipid metabolism in liver and white adipose tissue and induces hepatic oxidative stress in mice fed a high-fat diet.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa , Metabolismo de los Lípidos , Hígado/metabolismo , Estrés Oxidativo , Estrés Psicológico , Acetil-CoA Carboxilasa/metabolismo , Tejido Adiposo Pardo/enzimología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/enzimología , Animales , Peso Corporal , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Modelos Animales de Enfermedad , Ingestión de Energía , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Glutatión/metabolismo , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , Proteína Desacopladora 1/metabolismo
5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 388-398, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29343429

RESUMEN

Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5' untranslated region (5' UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5' UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl2, up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5' UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Cobalto/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Sitios Internos de Entrada al Ribosoma/genética , Biosíntesis de Proteínas , Regiones no Traducidas 5'/genética , Acetil-CoA Carboxilasa/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero , Células Hep G2 , Humanos , Plásmidos/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Oxid Med Cell Longev ; 2017: 9076052, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29435099

RESUMEN

Recently, the discovery of natural compounds capable of modulating nervous system function has revealed new perspectives for a healthier brain. Here, we investigated the effects of oleic acid (OA) and hydroxytyrosol (HTyr), two important extra virgin olive oil compounds, on lipid synthesis in C6 glioma cells. OA and HTyr inhibited both de novo fatty acid and cholesterol syntheses without affecting cell viability. The inhibitory effect of the individual compounds was more pronounced if OA and HTyr were administered in combination. A reduction of polar lipid biosynthesis was also detected, while triglyceride synthesis was marginally affected. To clarify the lipid-lowering mechanism of these compounds, their effects on the activity of key enzymes of fatty acid biosynthesis (acetyl-CoA carboxylase-ACC and fatty acid synthase-FAS) and cholesterologenesis (3-hydroxy-3-methylglutaryl-CoA reductase-HMGCR) were investigated in situ by using digitonin-permeabilized C6 cells. ACC and HMGCR activities were especially reduced after 4 h of 25 µM OA and HTyr treatment. No change in FAS activity was observed. Inhibition of ACC and HMGCR activities is corroborated by the decrease of their mRNA abundance and protein level. Our results indicate a direct and rapid downregulatory effect of the two olive oil compounds on lipid synthesis in C6 cells.


Asunto(s)
Anticolesterolemiantes/farmacología , Colesterol/metabolismo , Ácido Graso Sintasas/antagonistas & inhibidores , Glioma/metabolismo , Ácido Oléico/farmacología , Alcohol Feniletílico/análogos & derivados , Animales , Línea Celular Tumoral , Ácido Graso Sintasas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Aceite de Oliva/química , Alcohol Feniletílico/farmacología , Ratas
7.
Int J Mol Sci ; 17(6)2016 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-27231907

RESUMEN

The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism.


Asunto(s)
Carnitina Aciltransferasas/metabolismo , Proteínas Portadoras/metabolismo , Colesterol/biosíntesis , Ácidos Grasos/biosíntesis , Hormonas Tiroideas/fisiología , Acetilcoenzima A/metabolismo , Animales , Carnitina Aciltransferasas/genética , Proteínas Portadoras/genética , Citosol/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Lipogénesis , Mitocondrias/metabolismo
8.
IUBMB Life ; 67(1): 9-17, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25631376

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease in western countries, being considered the hepatic manifestation of metabolic syndrome. Cumulative lines of evidence suggest that olive oil, used as primary source of fat by Mediterranean populations, may play a key role in the observed health benefits on NAFLD. In this review, we summarize the state of the art of the knowledge on the protective role of both major and minor components of olive oil on lipid metabolism during NAFLD. In particular, the biochemical mechanisms responsible for the increase or decrease in hepatic lipid content are critically analyzed, taking into account that several studies have often provided different and/or conflicting results in animal models fed on olive oil-enriched diet. In addition, new findings that highlight the hypolipidemic and the antisteatotic actions of olive oil phenols are presented. As mitochondrial dysfunction plays a key role in the pathogenesis of NAFLD, the targeting of these organelles with olive oil phenols as a powerful therapeutic approach is also discussed.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Aceite de Oliva/química , Fenoles/farmacología , Humanos , Metabolismo de los Lípidos/fisiología , Mitocondrias/efectos de los fármacos , Aceite de Oliva/farmacología
9.
Eur J Nutr ; 54(5): 823-33, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25296884

RESUMEN

PURPOSE: Regular consumption of extra virgin olive oil (EVOO) is associated with a low incidence of atherosclerotic diseases. The phenolic component contributes to the hypolipidemic action of EVOO, although the biochemical mechanisms leading this beneficial outcome are not fully understood. Since liver plays a pivotal role in the whole body lipid homeostasis, we investigated the short-term effects of EVOO extract, with a high phenol content (HPE), on lipid synthesis in primary rat hepatocytes. Refined olive oil extract, with a low phenol content, was used throughout this study as a control. METHODS: Olive oil phenols isolated with methanolic extractions were subsequently analyzed by high performance liquid chromatography, electrospray ionization tandem mass spectrometry, and gas chromatography mass spectrometry. Rat hepatocytes were obtained from collagenase perfusion of liver. A colorimetric assay was performed to exclude cytotoxicity of the extracts. Radioenzymatic methods were used in order to investigate hepatic lipid metabolism. RESULTS: HPE, dose- (0.1-50 µg/mL) and time-dependently (0.5-4 h) inhibited both lipogenesis and cholesterogenesis (n = 6, P < 0.05), as well as triglycerides synthesis (n = 5, P < 0.05). We showed that these effects are attributable to a short-term modulation by HPE of the key enzymes implicated in the abovementioned pathways (n = 5, P < 0.05). CONCLUSIONS: The decrease in hepatic lipid synthesis may represent a potential mechanism underlying the hypolipidemic effect of EVOO phenols.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Aceite de Oliva/química , Fenoles/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Regulación hacia Abajo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
10.
Biochim Biophys Acta ; 1831(12): 1679-89, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23948263

RESUMEN

Thyroid hormone 3,5,3'-triiodo-l-thyronine (T3) is known to affect cell metabolism through both the genomic and non-genomic actions. Recently, we demonstrated in HepG2 cells that T3 controls the expression of SREBP-1, a transcription factor involved in the regulation of lipogenic genes. This occurs by activation of a cap-independent translation mechanism of its mRNA. Such a process is dependent on non-genomic activation of both MAPK/ERK and PI3K/Akt pathways. The physiological role of 3,5-diiodo-l-thyronine (T2), previously considered only as a T3 catabolite, is of growing interest. Evidences have been reported that T2 rapidly affects some metabolic pathways through non-genomic mechanisms. Here, we show that T2, unlike T3, determines the block of proteolytic cleavage of SREBP-1 in HepG2 cells, without affecting its expression at the transcriptional or translational level. Consequently, Fatty Acid Synthase expression is reduced. T2 effects depend on the concurrent activation of MAPKs ERK and p38, of Akt and PKC-δ pathways. Upon the activation of these signals, apoptosis of HepG2 cells seems to occur, starting at 12h of T2 treatment. PKC-δ appears to act as a switch between p38 activation and Akt suppression, suggesting that this PKC may function as a controller in the balance of pro-apoptotic (p38) and anti-apoptotic (Akt) signals in HepG2 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Diyodotironinas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Triyodotironina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Int J Biochem Cell Biol ; 44(4): 659-68, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22249025

RESUMEN

Citrate carrier (CiC), a mitochondrial inner membrane protein, is an essential component of the shuttle system which transports acetyl-CoA from mitochondria to the cytosol where lipogenesis occurs. CiC is regulated by SREBP-1, a transcription factor that controls the expression of several lipogenic genes. CiC is also implicated in cholesterol synthesis, glycolysis and gluconeogenesis, suggesting that besides SREBP-1 other transcription factors could modulate the expression of its gene. Here, we provide evidences demonstrating that CiC expression is regulated by peroxisome proliferator-activated receptor (PPAR) alpha and gamma in hepatocytes and adipocytes, respectively. CiC expression increased in rat BRL-3A hepatocytes treated with WY-14,643, agonist of PPARα, and in murine 3T3-L1 adipocytes treated with rosiglitazone, agonist of PPARγ. The overexpression of PPARα/RXRα and PPARγ/RXRα heterodimer enhanced CiC promoter activity in BRL-3A and 3T3-L1, respectively. Luciferase reporter gene and gel mobility shift assays indicated that a functional peroxisome proliferator-activated receptor response element (PPRE), identified in the CiC promoter, conferred responsiveness to activation by PPARs. The binding of PPRE of CiC promoter by PPARα and PPARγin vivo was confirmed by ChIP assay in BRL-3A and 3T3-L1 cells, respectively.


Asunto(s)
Adipocitos/metabolismo , Proteínas Portadoras/genética , Hepatocitos/metabolismo , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Regiones Promotoras Genéticas/genética , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Genes Reporteros/genética , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Luciferasas/genética , Ratones , Regiones Promotoras Genéticas/efectos de los fármacos , Unión Proteica , Ratas , Elementos de Respuesta/efectos de los fármacos , Elementos de Respuesta/genética , Activación Transcripcional/efectos de los fármacos
12.
J Cell Physiol ; 227(6): 2388-97, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21826653

RESUMEN

Liver is an important target for thyroid hormone actions. T(3) exerts its effects by two mechanisms: (i) Genomic actions consisting of T(3) link to nuclear receptors that bind responsive elements in the promoter of target genes, (ii) non-genomic actions including integrin αvb3 receptor-mediated MAPK/ERK and PI3K/Akt/mTOR-C1 activation. SREBP-1a, SREBP-1c, and SREBP-2 are transcription factors involved in the regulation of lipogenic genes. We show in Hep G2 cells that T(3) determined a dose- and time-dependent increase in the level of the precursor form of SREBP-1 without affecting SREBP-1 mRNA abundance. T(3) also induced phosphorylation of ERK1/2, Akt and of mTOR-C1 target S6K-P70, and the cytosol-to-membrane translocation of PKC-α. Modulation of SREBP-1 protein level by T(3) was dependent on MAPK/ERK, PI3K/Akt/mTOR-C1 pathway activation since the MEK inhibitor PD98059 or the PI3K inhibitor LY294002 abolished the stimulatory effect of T(3) . Conversely, the effect of T(3) on SREBP-1 level was enhanced by using rapamycin, mTOR-C1 inhibitor. These data suggest a negative control of mTOR-C1 target S6K-P70 on PI3K/Akt pathway. The effect of T(3) on SREBP-1 content increased also by using PKC inhibitors. These inhibitors increased the action of T(3) on Akt phosphorylation suggesting that conventional PKCs may work as negative regulators of the T(3) -dependent SREBP-1 increase. T(3) effects were partially abrogated by tetrac, an inhibitor of the T(3) -αvß3 receptor interaction and partially evoked by T(3) analog T(3) -agarose. These findings support a model in which T(3) activates intracellular signaling pathways which may be involved in the increment of SREBP-1 level through an IRES-mediated translation mechanism.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triyodotironina/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Retroalimentación Fisiológica , Células Hep G2 , Humanos , Integrina alfaVbeta3/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Serina-Treonina Quinasas TOR , Factores de Tiempo , Regulación hacia Arriba
13.
PLoS One ; 6(9): e24084, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21909411

RESUMEN

There is growing evidence that mitochondrial dysfunction, and more specifically fatty acid ß-oxidation impairment, is involved in the pathophysiology of non-alcoholic steatohepatitis (NASH). The goal of the present study was to achieve more understanding on the modification/s of carnitinepalmitoyltransferase-I (CPT-I), the rate-limiting enzyme of the mitochondrial fatty acid ß-oxidation, during steatohepatitis. A high fat/methionine-choline deficient (MCD) diet, administered for 4 weeks, was used to induce NASH in rats.We demonstrated that CPT-I activity decreased, to the same extent, both in isolated liver mitochondria and in digitonin-permeabilized hepatocytes from MCD-diet fed rats.At the same time, the rate of total fatty acid oxidation to CO(2) and ketone bodies, measured in isolated hepatocytes, was significantly lowered in treated animals when compared to controls. Finally, an increase in CPT-I mRNA abundance and protein content, together with a high level of CPT-I protein oxidation was observed in treated rats. A posttranslational modification of rat CPT-I during steatohepatitis has been here discussed.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Colina/farmacología , Dieta , Ácidos Grasos/metabolismo , Conducta Alimentaria/efectos de los fármacos , Hígado/enzimología , Metionina/farmacología , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colina/administración & dosificación , Pruebas de Enzimas , Ácidos Grasos/sangre , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Malonil Coenzima A/farmacología , Metionina/administración & dosificación , Metionina/deficiencia , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ácido Palmítico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
14.
Biochem J ; 429(3): 603-12, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20513236

RESUMEN

SREBPs (sterol-regulatory-element-binding proteins) are a family of transcription factors that modulate the expression of several enzymes implicated in endogenous cholesterol, fatty acid, triacylglycerol and phospholipid synthesis. In the present study, evidence for SREBP-1 regulation at the translational level is reported. Using several experimental approaches, we have demonstrated that the 5'-UTR (untranslated region) of the SREBP-1a mRNA contains an IRES (internal ribosome entry site). Transfection experiments with the SREBP-1a 5'-UTR inserted in a dicistronic reporter vector showed a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. Insertion of the SREBP-1c 5'-UTR in the same vector also stimulated the translation of the downstream cistron, but the observed effect can be ascribed, at least in part, to a cryptic promoter activity. Cellular stress conditions, such as serum starvation, caused an increase in the level of SREBP-1 precursor and mature form in both Hep G2 and HeLa cells, despite the overall reduction in protein synthesis, whereas mRNA levels for SREBP-1 were unaffected by serum starvation. Transfection experiments carried out with a dicistronic construct demonstrated that the cap-dependent translation was affected more than IRES-mediated translation by serum starvation. The thapsigargin- and tunicamycin-induced UPR (unfolded protein response) also increased SREBP-1 expression in Hep G2 cells, through the cap-independent translation mediated by IRES. Overall, these findings indicate that the presence of IRES in the SREBP-1a 5'-UTR allows translation to be maintained under conditions that are inhibitory to cap-dependent translation.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/genética , Ribosomas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Regiones no Traducidas 5' , Secuencia de Bases , Línea Celular , Medio de Cultivo Libre de Suero , Cartilla de ADN , Genes Reporteros , Humanos
15.
Mol Microbiol ; 77(3): 716-29, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20545843

RESUMEN

With the beginning of the idiophase the highly phosphorylated guanylic nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp), collectively referred to as (p)ppGpp, activate stress survival adaptation programmes and trigger secondary metabolism in actinomycetes. The major target of (p)ppGpp is the RNA polymerase, where it binds altering the enzyme activity. In this study analysis of the polynucleotide phosphorylase (PNPase)-encoding gene pnp mRNA, in Nonomuraea sp. ATCC 39727 wild-type, constitutively stringent and relaxed strains, led us to hypothesize that in actinomycetes (p)ppGpp may modulate gene expression at the level of RNA decay also. This hypothesis was supported by: (i) in vitro evidence that ppGpp, at physiological levels, inhibited both polynucleotide polymerase and phosphorolytic activities of PNPase in Nonomuraea sp., but not in Escherichia coli, (ii) in vivo data showing that the pnp mRNA and the A40926 antibiotic cluster-specific dpgA mRNA were stabilized during the idiophase in the wild-type strain but not in a relaxed mutant and (iii) measurement of chemical decay of pulse-labelled bulk mRNA. The results of biochemical tests suggest competitive inhibition of ppGpp with respect to nucleoside diphosphates in polynucleotide polymerase assays and mixed inhibition with respect to inorganic phosphate when the RNA phosphorolytic activity was determined.


Asunto(s)
Actinobacteria/enzimología , Proteínas Bacterianas/metabolismo , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Guanosina Tetrafosfato/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/genética
16.
Endocrinology ; 151(4): 1551-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20203153

RESUMEN

Citrate carrier (CiC), an integral protein of the mitochondrial inner membrane, plays an important role in hepatic intermediary metabolism, supplying the cytosol with acetyl-coenzyme A for fatty acid and cholesterol synthesis. Here, the effect of streptozotocin-induced diabetes on CiC activity and expression in rat liver was investigated. The rate of citrate transport was reduced by about 35% in mitochondria from diabetic vs. control rats. Kinetic studies in mitochondria from diabetic rats showed a reduction in maximum velocity and almost unchanged Michaelis-Menten constant of the CiC protein. Mitochondrial phospholipid amount was not significantly affected, whereas an increase in the cholesterol content and in the cholesterol/phospholipid ratio was observed. To thoroughly investigate the mechanism responsible for the reduced CiC activity in the diabetic state, molecular studies were performed. Ribonuclease protection assays and Western blotting analysis indicated that both hepatic CiC mRNA accumulation and protein level decreased similarly to the CiC activity. The reduced mRNA level and the lower content of the mitochondrial CiC protein, might account for the decline of CiC activity in diabetic animals. To discriminate between the role played by hyperglycemia from that of hypoinsulinemia in the reduction of CiC activity and expression, studies were conducted administrating phlorizin or insulin to streptozotocin-diabetic rats. Our data indicated that both insulin and glucose affect CiC activity and expression in diabetic rats, although they act at different regulatory steps.


Asunto(s)
Proteínas Portadoras/metabolismo , Ácido Cítrico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Análisis de Varianza , Animales , Glucemia/metabolismo , Western Blotting , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Proteínas Portadoras/genética , Colesterol/sangre , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Insulina/metabolismo , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/genética , Membranas Mitocondriales/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Tamaño de los Órganos/fisiología , Florizina/metabolismo , Florizina/farmacología , Fosfolípidos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
17.
Biochim Biophys Acta ; 1797(2): 233-40, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19878644

RESUMEN

Besides triiodothyronine (T3), 3,5-diiodo-L-thyronine (T2) has been reported to affect mitochondrial bioenergetic parameters. T2 effects have been considered as independent of protein synthesis. Here, we investigated the effect of in vivo chronic T2 administration to hypothyroid rats on liver mitochondrial F(o)F(1)-ATP synthase activity and expression. T2 increased state 4 and state 3 oxygen consumption and raised ATP synthesis and hydrolysis, which were reduced in hypothyroid rats. Immunoblotting analysis showed that T2 up-regulated the expression of several subunits (alpha, beta, F(o)I-PVP and OSCP) of the ATP synthase. The observed increase of beta-subunit mRNA accumulation suggested a T2-mediated nuclear effect. Then, the molecular basis underlying T2 effects was investigated. Our results support the notion that the beta-subunit of ATP synthase is indirectly regulated by T2 through, at least in part, the activation of the transcription factor GA-binding protein/nuclear respiratory factor-2. These findings provide new insights into the T2 role on bioenergetic mechanisms.


Asunto(s)
Diyodotironinas/farmacología , Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Hipotiroidismo/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Animales , Inmunoprecipitación de Cromatina , Factor de Transcripción de la Proteína de Unión a GA/genética , Hipotiroidismo/tratamiento farmacológico , Immunoblotting , Masculino , Potencial de la Membrana Mitocondrial , Consumo de Oxígeno , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
IUBMB Life ; 61(10): 987-94, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19787704

RESUMEN

The citrate carrier (CiC), a nuclear-encoded protein located in the mitochondrial inner membrane, is a member of the mitochondrial carrier family. CiC plays an important role in hepatic lipogenesis, which is responsible for the efflux of acetyl-CoA from the mitochondria to the cytosol in the form of citrate, the primer for fatty acid and cholesterol synthesis. In addition, CiC is a key component of the isocitrate-oxoglutarate and the citrate-malate shuttles. CiC has been purified from various species and its reconstituted function characterized as well as its cDNA isolated and sequenced. CiC mRNA and/or CiC protein levels are high in liver, pancreas, and kidney, but are low or absent in brain, heart, skeletal muscle, placenta, and lungs. A reduction of CiC activity was found in diabetic, hypothyroid, starved rats, and in rats fed on a polyunsaturated fatty acid (PUFA)-enriched diet. Molecular analysis suggested that the regulation of CiC activity occurs mainly through transcriptional and post-transcriptional mechanisms. This review begins with an assessment of the current understanding of CiC structural and biochemical characteristics, underlying the structure-function relationship. Emphasis will be placed on the molecular basis of the regulation of CiC activity in coordination with fatty acid synthesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Mitocondrias/metabolismo , Acetilcoenzima A/metabolismo , Animales , Sitios de Unión/genética , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Ácido Cítrico/metabolismo , Citosol/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Grasos Insaturados/metabolismo , Predicción , Cinética , Lipogénesis , Hígado/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/genética , Mitocondrias Hepáticas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica/genética , Ratas
19.
Biochem J ; 417(2): 561-71, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18795892

RESUMEN

CiC (citrate carrier), a mitochondrial membrane protein, plays an important metabolic role by transporting acetyl-CoA into the cytosol for fatty acid and cholesterol synthesis. Several studies showed that CiC activity and expression is regulated by dietary fatty acids. In the present study we report data on the structural and functional characterization of the 5'-flanking region of the rat Cic gene. By transient transfection assays in H4IIE rat hepatoma cells, a PUFA (polyunsaturated fatty acids) response region has been identified within the CiC promoter. A cluster of putative binding sites for several transcription factors, composed of a NF-Y (nuclear factor-Y) site, an E-box-like site, a SRE1 (sterol regulatory element 1)-like site and four Sp1 (stimulatory protein 1) sites, was localized in the promoter region. Luciferase reporter gene and gel mobility shift assays indicated that a functional E-box-like, essential to the basal CiC promoter activity, confers responsiveness to activation by SREBP (SRE-binding protein)-1c. This study provides evidence for SREBP-1c as a principal target for PUFA regulation of CiC transcription. In H4IIE cells, overexpression of nSREBP (nuclear SREBP)-1c over-rides arachidonic acid (C(20:4, n-6)) suppression, but does not prevent the repression by docosahexaenoic acid (C(22:6, n-3)). ChIP (chromatin immunoprecipitation) assays in H4IIE cells showed that docosahexaenoic acid affects the binding of NF-Y, Sp1 and SREBP-1 to the PUFA response region of CiC promoter, whereas arachidonic acid alters only the binding of SREBP-1. Our data show that PUFA inhibition of hepatic Cic gene transcription is mediated not only by the nuclear level of SREBP-1c, but also might involve a reduction in Sp1 and NF-Y DNA binding, suggesting differential mechanisms in the Cic gene regulation by different PUFA.


Asunto(s)
Proteínas Portadoras/metabolismo , Hígado/metabolismo , Regiones Promotoras Genéticas/genética , Animales , Proteínas Portadoras/genética , Línea Celular , Ácidos Grasos Insaturados , Regulación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Unión Proteica , ARN Mensajero/genética , Ratas , Ratas Wistar , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcripción Genética/genética
20.
Biochim Biophys Acta ; 1777(10): 1326-35, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18775409

RESUMEN

Extracellular ATP formation from ADP and inorganic phosphate, attributed to the activity of a cell surface ATP synthase, has so far only been reported in cultures of some proliferating and tumoral cell lines. We now provide evidence showing the presence of a functionally active ecto-F(o)F(1)-ATP synthase on the plasma membrane of normal tissue cells, i.e. isolated rat hepatocytes. Both confocal microscopy and flow cytometry analysis show the presence of subunits of F(1) (alpha/beta and gamma) and F(o) (F(o)I-PVP(b) and OSCP) moieties of ATP synthase at the surface of rat hepatocytes. This finding is confirmed by immunoblotting analysis of the hepatocyte plasma membrane fraction. The presence of the inhibitor protein IF(1) is also detected on the hepatocyte surface. Activity assays show that the ectopic-ATP synthase can work both in the direction of ATP synthesis and hydrolysis. A proton translocation assay shows that both these mechanisms are accompanied by a transient flux of H(+) and are inhibited by F(1) and F(o)-targeting inhibitors. We hypothesise that ecto-F(o)F(1)-ATP synthase may control the extracellular ADP/ATP ratio, thus contributing to intracellular pH homeostasis.


Asunto(s)
Espacio Extracelular/metabolismo , Hepatocitos/enzimología , ATPasas de Translocación de Protón Mitocondriales , Adenosina Trifosfato/metabolismo , Animales , Membrana Celular/química , Membrana Celular/enzimología , Células Cultivadas , Hepatocitos/citología , Masculino , Potencial de la Membrana Mitocondrial/fisiología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA