Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855965

RESUMEN

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.

2.
Environ Monit Assess ; 196(7): 615, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38871834

RESUMEN

The Citarum watershed and the Saguling reservoir are vital natural resources in Indonesia, affecting the livelihood of West Java and the DKI Jakarta population. This study aimed to assess the soil erosion in the Upper Citarum watershed and identify its source. The study used the fallout radionuclide technique, geochemical tracers, and an unmixing model to measure soil erosion and the contribution of suspended sediment sources due to erosion. Soil bulk transects and surface soil were sampled using a coring tool on the Ciwidey and Cisangkuy sub-watersheds. Riverbank and suspended sediment samples were collected from tributaries and rivers. With 137Cs, 40% of the samples had values below the minimum detectable activity, and vice versa for 210Pbex, all samples are detectable. For mitigation, bare land needs to be recovered due to its erosion (25.6 t ha-1 year-1) exceeding the tolerance erosion value (17 t ha-1 year-1). Statistically, Mg and Na were the most appropriate composite tracers for suspended sediment contribution. The unmixing model predicted the sediment contributors from bare land (58%), the riverbank (32.7%), and plantation land (9.3%). Proper land conservation could reduce sediment supply by almost 14.7% and extend the reservoir's life. This is the first study to report the feasibility of the unmixing model in Indonesia.


Asunto(s)
Monitoreo del Ambiente , Ríos , Erosión del Suelo , Indonesia , Monitoreo del Ambiente/métodos , Ríos/química , Sedimentos Geológicos/química , Suelo/química , Radioisótopos de Cesio/análisis , Conservación de los Recursos Naturales/métodos
3.
Environ Pollut ; 335: 122289, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37532217

RESUMEN

Particulate matter (PM) pollution poses a significant threat to human health. Greenery, particularly trees, can act as effective filters for PM, reducing associated health risks. Previous studies have indicated that tree traits play a crucial role in determining the amount of PM accumulated on leaves, although findings have often been site-specific. To comprehensively investigate the key factors influencing PM binding to leaves across diverse tree species and geographical locations, we conducted an extensive analysis using data extracted from 57 publications. The data covers 11 countries and 190 tree species from 1996 to 2021. We categorized tree species into functional groups: evergreen conifers, deciduous conifers, deciduous broadleaves, and evergreen broadleaves based on leaf habit and phylogeny. Evergreen conifers exhibited the highest PM accumulation on leaves, and in general, evergreen leaves accumulated more PM compared to deciduous leaves across all PM size classes. Specific leaf traits, such as epicuticular wax, played a significant role. The highest PM loads on leaves were observed in peri-urban areas along the rural-peri-urban-urban gradient. However, the availability of global data was skewed, with most data originating from urban and peri-urban areas, primarily from China and Poland. Among different climate zones, substantial data were only available for warm temperate and cold steppe climate zones. Understanding the problem of PM pollution and the role of greenery in urban environments is crucial for monitoring and controlling PM pollution. Our systematic review of the literature highlights the variation on PM loading among different vegetation types with varying leaf characteristics. Notably, epicuticular wax emerged as a marker trait that exhibited variability across PM size fractions and different vegetation types. In conclusion, this review emphasizes the importance of greenery in mitigation PM pollution. Our findings underscore the significance of tree traits in PM binding. However, lack of data stresses the need for further research and data collection initiatives.


Asunto(s)
Contaminantes Atmosféricos , Tracheophyta , Humanos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Hábitos , Material Particulado/análisis , Hojas de la Planta/química , Árboles , Urbanización
4.
New Phytol ; 239(1): 325-339, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084070

RESUMEN

Ectomycorrhizal (ECM) fungi can both accelerate and decelerate decomposition of organic matter in forest soils, but a mechanistic understanding of this differential influence is limited. Here, we tested how ECM fungi affect decomposition along a natural fertility gradient in a temperate forest of European beech. Trees were girdled to reduce belowground carbon supply to the soil. Girdling shifted soil fungal community composition and decreased hyphal biomass production and soil CO2 efflux, indicating a reduced ECM fungal activity. Girdling also affected decomposition processes, but the effects depended on fertility. Our results indicate that ECM fungi decelerate decomposition under conditions of low fertility while under conditions of high fertility ECM fungi and their host roots have an accelerating effect. We conclude that both acceleration and deceleration of decomposition of organic matter by ECM fungi can occur within a forest, with soil fertility determining the direction and magnitude of these effects. We suggest a positive feedback between fertility, stand productivity and soil carbon and nitrogen dynamics that is mediated to a large extent by ECM fungi.


Asunto(s)
Micorrizas , Suelo , Bosques , Árboles/microbiología , Carbono , Microbiología del Suelo , Hongos , Nitrógeno
6.
New Phytol ; 231(2): 777-790, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34013982

RESUMEN

Fungi are known to exert a significant influence over soil organic matter (SOM) turnover, however understanding of the effects of fungal community structure on SOM dynamics and its consequences for ecosystem fertility is fragmentary. Here we studied soil fungal guilds and SOM decomposition processes along a fertility gradient in a temperate mountain beech forest. High-throughput sequencing was used to investigate fungal communities. Carbon and nitrogen stocks, enzymatic activity and microbial respiration were measured. While ectomycorrhizal fungal abundance was not related to fertility, saprotrophic ascomycetes showed higher relative abundances under more fertile conditions. The activity of oxidising enzymes and respiration rates in mineral soil were related positively to fertility and saprotrophic fungi. In addition, organic layer carbon and nitrogen stocks were lower on the more fertile plots, although tree biomass and litter input were higher. Together, the results indicated a faster SOM turnover at the fertile end of the gradient. We suggest that there is a positive feedback mechanism between SOM turnover and fertility that is mediated by soil fungi to a significant extent. By underlining the importance of fungi for soil fertility and plant growth, these findings furthermore emphasise the dependency of carbon cycling on fungal communities below ground.


Asunto(s)
Micobioma , Suelo , Carbono , Ecosistema , Bosques , Hongos , Microbiología del Suelo
7.
Microb Ecol ; 82(1): 243-256, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33755773

RESUMEN

Forests on steep slopes constitute a significant proportion of European mountain areas and are important as production and protection forests. This study describes the soil fungal community structure in a European beech-dominated mountain forest stands in the Northern Calcareous Alps and investigates how it is determined by season and soil properties. Samples were collected at high spatial resolution in an area of ca. 100 m × 700 m in May (spring) and August (summer). Illumina MiSeq high-throughput sequencing of the ITS2-region revealed distinct patterns for the soil fungal communities. In contrast to other studies from temperate European beech forest stands, Ascomycota dominated the highly diverse fungal community, while ectomycorrhizal fungi were of lower abundance. Russulaceae, which are often among the dominant ectomycorrhizal fungi associated with European beech, were absent from all samples. Potentially plant pathogenic fungi were more prevalent than previously reported. Only subtle seasonal differences were found between fungal communities in spring and summer. Especially, dominant saprotrophic taxa were largely unaffected by season, while slightly stronger effects were observed for ectomycorrhizal fungi. Soil characteristics like pH and organic carbon content, on the other hand, strongly shaped abundant taxa among the saprotrophic fungal community.


Asunto(s)
Fagus , Micorrizas , Bosques , Hongos/genética , Micorrizas/genética , Estaciones del Año , Suelo , Microbiología del Suelo
8.
J Ecol ; 108(2): 496-514, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32189723

RESUMEN

Fine roots and above-ground litterfall play a pivotal role in carbon dynamics in forests. Nonetheless, direct estimation of stocks of fine roots remains methodologically challenging. Models are thus widely used to estimate these stocks and help elucidate drivers of fine root growth and turnover, at a range of scales.We updated a database of fine root biomass, necromass and production derived from 454 plots across European forests. We then compared fine root biomass and production to estimates obtained from 19 different models. Typical input variables used for the models included climate, net primary production, foliage and above-ground biomass, leaf area index (LAI), latitude and/or land cover type. We tested whether performance could be improved by fitting new multiple regression models, and explored effects of species composition and sampling method on estimated fine root biomass.Average fine root biomass was 332 g/m2, and necromass 379 g/m2, for European forests where the average fine root production was 250 g m-2 year-1. Carbon fraction in fine roots averaged 48.4%, and was 1.5% greater in broadleaved species than conifers.Available models were poor predictors of fine root biomass and production. The best performing models assumed proportionality between above- and below-ground compartments, and used remotely sensed LAI or foliage biomass as key inputs. Model performance was improved by use of multiple regressions, which revealed consistently greater biomass and production in stands dominated by broadleaved species as well as in mixed stands even after accounting for climatic differences. Synthesis. We assessed the potential of existing models to estimate fine root biomass and production in European forests. We show that recalibration reduces by about 40% errors in estimates currently produced by the best available models, and increases three-fold explained variation. Our results underline the quantitative significance of fine roots (live and dead) to the global carbon cycle.

9.
Mycorrhiza ; 30(2-3): 197-210, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32078049

RESUMEN

We evaluated whether changes in fine root non-structural carbohydrate reserves of Fagus sylvatica and Pinus sylvestris trees influence potential enzymatic activities of their ectomycorrhizal symbionts from winter towards spring reactivation, and whether these changes influence potential soil enzymatic activities. We analyzed sugar and starch concentrations in the fine roots of Fagus sylvatica and Pinus sylvestris and potential activities of ß-glucosidase, ß-xylosidase, and cellobiohydrolase (as proxies for carbon-degrading enzymes) as well as leucine aminopeptidase and chitinase (as proxies for nitrogen-degrading enzymes) of their dominant ectomycorrhizal symbionts as well as in the soil. Sugar concentrations in the fine roots were significantly positively correlated with enzymatic activities of the ectomycorrhizal symbionts. In Pinus sylvestris, both carbon- and nitrogen-degrading enzyme activities showed significant positive correlations with fine root sugar concentrations. In Fagus sylvatica, fine root sugar concentrations were explicitly positively correlated with the activity of nitrogen-degrading enzymes. The chitinase activity in the soil was found to be strongly positively correlated with the enzymatic activity of the ectomycorrhizal symbionts as well as with fine root sugar concentrations. Fine root carbohydrate concentrations of Fagus sylvatica and Pinus sylvestris trees and enzymatic activities of their associated ectomycorrhizal fungi are connected. The specific nutrient demand of the tree species during spring reactivation may affect ectomycorrhizal enzymatic activity via carbon mobilization in the fine roots of Fagus sylvatica and Pinus sylvestris. Moreover, our results suggest that trees indirectly contribute to the degradation of fungal necromass by stimulating ectomycorrhizal chitinase activity in the soil.


Asunto(s)
Fagus , Micorrizas , Pinus sylvestris , Carbohidratos , Raíces de Plantas
10.
BMC Ecol ; 18(1): 58, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558598

RESUMEN

BACKGROUND: Land use changes and related land management practices significantly alter soil physicochemical properties; however, their effects on the soil microbial community structure are still unclear. In this study, we used automated ribosomal intergenic spacer analysis to determine the fungal and bacterial community composition in soils from different land use areas in the Ethiopian highlands. Soil samples were collected from five areas with different land uses, natural forest, eucalyptus plantation, exclosure, grassland and cropland, which had all historically been natural forest. RESULTS: Our results showed a significant shift in the soil bacterial and fungal community composition in response to land use change. We also identified soil physicochemical factors corresponding to the changes in bacterial and fungal communities. Although most soil attributes, including soil organic carbon, total soil nitrogen, labile P, soil pH and soil aggregate stability, were related to the change in bacterial community composition, the total soil nitrogen and soil organic carbon had the strongest relationships. The change in fungal community composition was correlated with soil nutrients, organic carbon, soil nitrogen and particularly the labile P concentration. CONCLUSIONS: The fungal community composition was likely affected by the alteration of vegetation cover in response to land use change, whereas the bacterial communities were mainly sensitive to changes in soil attributes. The study highlights the higher sensitivity of fungal communities than bacterial communities to land use changes.


Asunto(s)
Granjas , Bosques , Microbiota , Microbiología del Suelo , Agricultura , Bacterias/clasificación , Etiopía , Hongos/clasificación
11.
Sci Rep ; 7(1): 13602, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29051610

RESUMEN

Land use change alters biodiversity and soil quality and thus affects ecosystem functions. This study investigated the effects of changes in land use on major soil quality indicators. Soil samples were taken from a depth of 0-10 cm (top soil) under four major land uses (cropland, grassland, area exclosure, eucalyptus plantation) with similar land use change histories for analysis, and soil from a nearby natural forest was used as a reference. Land use change from natural forest to cropland and grassland significantly decreased major soil quality indicators such as soil organic C (SOC), total soil N (TSN), molybdate-reactive bicarbonate-extractable P, and arbuscular mycorrhizal fungi (AMF) spore density, but compared to the cropland, change to area exclosure and eucalyptus plantation significantly improved SOC, TSN and soil aggregate stability (SAS). In addition, we assessed the correlation among indicators and found that SOC, TSN and SAS significantly correlate with many other soil quality indicators. The study highlights that the conversion of natural forest to cropland results in decline of soil quality and aggregate stability. However, compared to cropland, application of area exclosure and afforestation on degraded lands restores soil quality and aggregate stability.

12.
New Phytol ; 215(3): 977-991, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28586137

RESUMEN

The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients.


Asunto(s)
Adaptación Fisiológica , Raíces de Plantas/fisiología , Taiga , Bacterias/metabolismo , Betula/microbiología , Biomasa , Carbono/análisis , Europa (Continente) , Geografía , Modelos Biológicos , Micelio/fisiología , Micorrizas/fisiología , Nitrógeno/análisis , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
13.
Plant Soil ; 411(1): 467-481, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28216795

RESUMEN

BACKGROUND AND AIMS: Picea abies, Pinus mugo and Rhododendron ferrugineum co-exist at the alpine tree line, and can have different mycorrhizal communities. The activity and diversity of mycorrhizal fungi are considered to be important factors in regulation of soil function. METHODS: At a tree line site and a lower elevation site in the Austrian Alps, the community structure of ectomycorrhiza on Picea abies and Pinus mugo was determined. The activity of surface enzymes was determined on ectomycorrhizal and ericoid mycorrhizal roots. In soils, the activity of a range of enzymes, nitrogen (N) mineralization and biomass decomposition were determined. RESULTS: The community structure of the ectomycorrhizal community of Picea abies and Pinus mugo differed strongly, but the average activity of surface enzymes of the ectomycorrhizal communities was similar. A lower root surface enzyme activity was determined on Rhododendron ferrugineum. Soil N-mineralization under Rhododendron ferrugineum was significantly lower than under Picea abies and Pinus mugo. In soil, the activity of a range of enzymes did not differ at the tree line but differed between the tree line and the lower elevation sites. CONCLUSION: The different ectomycorrhizal communities on Picea abies and Pinus mugo and ericoid mycorrhizas on Rhododendron ferrugineum support similar ecosystem functions in soil.

14.
Ambio ; 45(1): 29-41, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26264716

RESUMEN

The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.


Asunto(s)
Ecosistema , Bosques , Biodiversidad , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente , Árboles
16.
Plant Physiol ; 166(2): 736-45, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24948830

RESUMEN

Within branched root systems, a distinct heterogeneity of traits exists. Knowledge about the ecophysiology of different root types is critical to understand root system functioning. Classification schemes have to match functional root types as closely as possible to be used for sampling and modeling. Among ecophysiological root traits, respiration is of particular importance, consuming a great amount of carbon allocated. Root architecture differs between the four deciduous tree seedlings. However, two types of terminal root segments (i.e. first and second orders), white colored and brown colored, can be distinguished in all four species but vary in frequency, their morphology differing widely from each other and higher coarse root orders. Root respiration is related to diameter and tissue density. The use of extended root ordering (i.e. order and color) explains the variance of respiration two times as well as root diameter or root order classes alone. White terminal roots respire significantly more than brown ones; both possess respiration rates that are greater than those of higher orders in regard to dry weight and lower in regard to surface area. The correlation of root tissue density to respiration will allow us to use this continuous parameter (or easier to determine dry matter content) to model the respiration within woody root systems without having to determine nitrogen contents. In addition, this study evidenced that extended root orders are better suited than root diameter classes to picture the differences between root functional types. Together with information on root order class frequencies, these data allow us to calculate realistic, species-specific respiration rates of root branches.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/fisiología , Árboles/fisiología , Especificidad de la Especie , Árboles/clasificación
17.
PLoS One ; 9(1): e86246, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465985

RESUMEN

Elevated atmospheric CO2 can change foliar tissue chemistry. This alters leaf litter palatability to macroinvertebrate detritivores with consequences for decomposition, nutrient turnover, and food-web structure. Currently there is no consensus on the link between CO2 enrichment, litter chemistry, and macroinvertebrate-mediated leaf decomposition. To identify any unifying mechanisms, we presented eight invertebrate species from aquatic and terrestrial ecosystems with litter from Alnus glutinosa (common alder) or Betula pendula (silver birch) trees propagated under ambient (380 ppm) or elevated (ambient +200 ppm) CO2 concentrations. Alder litter was largely unaffected by CO2 enrichment, but birch litter from leaves grown under elevated CO2 had reduced nitrogen concentrations and greater C/N ratios. Invertebrates were provided individually with either (i) two litter discs, one of each CO2 treatment ('choice'), or (ii) one litter disc of each CO2 treatment alone ('no-choice'). Consumption was recorded. Only Odontocerum albicorne showed a feeding preference in the choice test, consuming more ambient- than elevated-CO2 birch litter. Species' responses to alder were highly idiosyncratic in the no-choice test: Gammarus pulex and O. albicorne consumed more elevated-CO2 than ambient-CO2 litter, indicating compensatory feeding, while Oniscus asellus consumed more of the ambient-CO2 litter. No species responded to CO2 treatment when fed birch litter. Overall, these results show how elevated atmospheric CO2 can alter litter chemistry, affecting invertebrate feeding behaviour in species-specific ways. The data highlight the need for greater species-level information when predicting changes to detrital processing-a key ecosystem function-under atmospheric change.


Asunto(s)
Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Ecosistema , Herbivoria , Invertebrados/fisiología , Plantas/metabolismo , Análisis de Varianza , Animales , Fotosíntesis , Hojas de la Planta/metabolismo
18.
Front Plant Sci ; 4: 335, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24032035

RESUMEN

Morphological plasticity of ectomycorrhizal (EcM) short roots (known also as first and second order roots with primary development) allows trees to adjust their water and nutrient uptake to local environmental conditions. The morphological traits (MTs) of short-living EcM roots, such as specific root length (SRL) and area, root tip frequency per mass unit (RTF), root tissue density, as well as mean diameter, length, and mass of the root tips, are good indicators of acclimation. We investigated the role of EcM root morphological plasticity across the climate gradient (48-68°N) in Norway spruce (Picea abies (L.) Karst) and (53-66°N) birch (Betula pendula Roth., B. pubescens Ehrh.) forests, as well as in primary and secondary successional birch forests assuming higher plasticity of a respective root trait to reflect higher relevance of that characteristic in acclimation process. We hypothesized that although the morphological plasticity of EcM roots is subject to the abiotic and biotic environmental conditions in the changing climate; the tools to achieve the appropriate morphological acclimation are tree species-specific. Long-term (1994-2010) measurements of EcM roots morphology strongly imply that tree species have different acclimation-indicative root traits in response to changing environments. Birch EcM roots acclimated along latitude by changing mostly SRL [plasticity index (PI) = 0.60], while spruce EcM roots became adjusted by modifying RTF (PI = 0.68). Silver birch as a pioneer species must have a broader tolerance to environmental conditions across various environments; however, the mean PI of all MTs did not differ between early-successional birch and late-successional spruce. The differences between species in SRL, and RTF, diameter, and length decreased southward, toward temperate forests with more favorable growth conditions. EcM root traits reflected root-rhizosphere succession across forest succession stages.

19.
Med Confl Surviv ; 29(1): 7-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23729095

RESUMEN

Iraq is suffering from depleted uranium (DU) pollution in many regions and the effects of this may harm public health through poisoning and increased incidence of various cancers and birth defects. DU is a known carcinogenic agent. About 1200 tonnes of ammunition were dropped on Iraq during the Gulf Wars of 1991 and 2003. As a result, contamination occurred in more than 350 sites in Iraq. Currently, Iraqis are facing about 140,000 cases of cancer, with 7000 to 8000 new ones registered each year. In Baghdad cancer incidences per 100,000 population have increased, just as they have also increased in Basra. The overall incidence of breast and lung cancer, Leukaemia and Lymphoma, has doubled even tripled. The situation in Mosul city is similar to other regions. Before the Gulf Wars Mosul had a higher rate of cancer, but the rate of cancer has further increased since the Gulf Wars.


Asunto(s)
Anomalías Congénitas/epidemiología , Contaminación Ambiental/efectos adversos , Neoplasias/epidemiología , Uranio/efectos adversos , Anomalías Congénitas/etiología , Guerra del Golfo , Humanos , Incidencia , Irak/epidemiología , Guerra de Irak 2003-2011 , Neoplasias/inducido químicamente , Suelo/química , Contaminantes Radiactivos del Suelo/análisis , Uranio/análisis
20.
Glob Chang Biol ; 19(1): 217-28, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23504733

RESUMEN

As a consequence of land-use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2 . However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2 , Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 µmol mol(-1) ) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change.


Asunto(s)
Dióxido de Carbono/análisis , Raíces de Plantas/crecimiento & desarrollo , Árboles/fisiología , Biomasa , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...