Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(13)2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635631

RESUMEN

In the field of geo-hazards and geo-engineering, monitoring networks represent a key element for the geological risk assessment and the design and management of large infrastructures construction. In the last decade, we have observed a strong development on remote sensing techniques but just small changes in the subsoil observations. However, this type of measurement is very important to have a three-dimensional representation of the studied area, since the surface measurements often represent a sum of deformations that develop in a complex way in the subsoil. In this paper, we present a robotic inclinometer system developed to acquire deep-seated ground deformations in boreholes. This instrumentation combines advantages offered by manual inclinometer measurements with a robotized approach that improves the results in term of accuracy, revisiting time, and site accessibility. The Automated Inclinometer System (AIS) allows one to explore automatically all the length of the monitored borehole using just one inclinometer probe with a semi-wireless system. The paper presents the system and a detailed dataset of measurements acquired on three inclinometer tubes installed for the monitoring of the construction phase of the new Line C Metro of Rome. The dataset was acquired in real monitored site and undisturbed conditions and can represent a benchmark for modern inclinometer measurements.

2.
Sensors (Basel) ; 19(10)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121988

RESUMEN

Structure from Motion (SfM) is a powerful tool to provide 3D point clouds from a sequence of images taken from different remote sensing technologies. The use of this approach for processing images captured from both Remotely Piloted Aerial Vehicles (RPAS), historical aerial photograms, and smartphones, constitutes a valuable solution for the identification and characterization of active landslides. We applied SfM to process all the acquired and available images for the study of the Champlas du Col landslide, a complex slope instability reactivated in spring 2018 in the Piemonte Region (north-western Italy). This last reactivation of the slide, principally due to snow melting at the end of the winter season, interrupted the main road used to reach Sestriere, one of the most famous ski resorts in north-western Italy. We tested how SfM can be applied to process high-resolution multisource datasets by processing: (i) historical aerial photograms collected from five diverse regional flights, (ii) RGB and multi-spectral images acquired by two RPAS, taken in different moments, and (iii) terrestrial sequences of the most representative kinematic elements due to the evolution of the landslide. In addition, we obtained an overall framework of the historical development of the area of interest, and distinguished several generations of landslides. Moreover, an in-depth geomorphological characterization of the Champlas du Col landslide reactivation was done, by testing a cost-effective and rapid methodology based on SfM principles, which is easily repeatable to characterize and investigate active landslides.

3.
Sci Total Environ ; 639: 316-330, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29791884

RESUMEN

Three hypotheses exist to explain how meteorological variables drive the amount and concentration of solute-enriched water from rock glaciers: (1) Warm periods cause increased subsurface ice melt, which releases solutes; (2) rain periods and the melt of long-lasting snow enhance dilution of rock-glacier outflows; and (3) percolation of rain through rock glaciers facilitates the export of solutes, causing an opposite effect as that described in hypothesis (2). This lack of detailed understanding likely exists because suitable studies of meteorological variables, hydrologic processes and chemical characteristics of water bodies downstream from rock glaciers are unavailable. In this study, a rock-glacier pond in the North-Western Italian Alps was studied on a weekly basis for the ice-free seasons 2014 and 2015 by observing the meteorological variables (air temperature, snowmelt, rainfall) assumed to drive the export of solute-enriched waters from the rock glacier and the hydrochemical response of the pond (water temperature as a proxy of rock-glacier discharge, stable water isotopes, major ions and selected trace elements). An intra-seasonal pattern of increasing solute export associated with higher rock-glacier discharge was found. Specifically, rainfall, after the winter snowpack depletion and prolonged periods of atmospheric temperature above 0 °C, was found to be the primary driver of solute export from the rock glacier during the ice-free season. This occurs likely through the flushing of isotopically- and geochemically-enriched icemelt, causing concomitant increases in the rock-glacier discharge and the solute export (SO42-, Mg2+, Ca2+, Ni, Mn, Co). Moreover, flushing of microbially-active sediments can cause increases in NO3- export.

4.
Environ Sci Technol ; 50(17): 9150-60, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27466701

RESUMEN

Over the past two decades, we observed a substantial rise in ionic content that was mainly determined by the sulfate concentration at 20 remote high elevation lakes located in central southern Himalaya. At LCN9, which was monitored on an annual basis for the last 20 years, the sulfate concentrations increased over 4-fold. Among the main causes, we exclude a change in the composition of wet atmospheric deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes. Glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. We attribute this chemical changes mainly to the sulfide oxidation processes that occur in subglacial environments. Moreover, we observe that the weakened monsoon of the past two decades has only partially contributed to the lakes enrichment through runoff waters that are more concentrated in solutes or lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.


Asunto(s)
Cubierta de Hielo/química , Lagos , Nieve/química , Sulfatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...