Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Stroke ; 55(4): 1090-1093, 2024 Apr.
Article En | MEDLINE | ID: mdl-38299349

BACKGROUND: Air pollution particulate matter exposure and chronic cerebral hypoperfusion (CCH) contribute to white matter toxicity through shared mechanisms of neuroinflammation, oxidative stress, and myelin breakdown. Prior studies showed that exposure of mice to joint particulate matter and CCH caused supra-additive injury to corpus callosum white matter. This study examines the role of TLR4 (toll-like receptor 4) signaling in mediating neurotoxicity and myelin damage observed in joint particulate matter and CCH exposures. METHODS: Experiments utilized a novel murine model of inducible monocyte/microglia-specific TLR4 knockout (i-mTLR4-ko). Bilateral carotid artery stenosis (BCAS) was induced surgically to model CCH. TLR4-intact (control) and i-mTLR4-ko mice were exposed to 8 weeks of either aerosolized diesel exhaust particulate (DEP) or filtered air (FA) in 8 experimental groups: (1) control/FA (n=10), (2) control/DEP (n=10), (3) control/FA+BCAS (n=9), (4) control/DEP+BCAS (n=10), (5) i-mTLR4-ko/FA (n=9), (6) i-mTLR4-ko/DEP (n=8), (7) i-mTLR4-ko/FA+BCAS (n=8), and (8) i-mTLR4-ko/DEP+BCAS (n=10). Corpus callosum levels of 4-hydroxynonenal, 8-Oxo-2'-deoxyguanosine, Iba-1 (ionized calcium-binding adapter molecule 1), and dMBP (degraded myelin basic protein) were assayed via immunofluorescence to measure oxidative stress, neuroinflammation, and myelin breakdown, respectively. RESULTS: Compared with control/FA mice, control/DEP+BCAS mice exhibited increased dMBP (41%; P<0.01), Iba-1 (51%; P<0.0001), 4-hydroxynonenal (100%; P<0.0001), and 8-Oxo-2'-deoxyguanosine (65%; P<0.05). I-mTLR4 knockout attenuated responses to DEP/BCAS for all markers. CONCLUSIONS: i-mTLR4-ko markedly reduced neuroinflammation and oxidative stress and attenuated white matter degradation following DEP and CCH exposures. This suggests a potential role for targeting TLR4 signaling in individuals with vascular cognitive impairment, particularly those exposed to substantial ambient air pollution.


Aldehydes , Brain Ischemia , Carotid Stenosis , White Matter , Animals , Mice , Microglia/metabolism , White Matter/metabolism , Vehicle Emissions/toxicity , Neuroinflammatory Diseases , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Brain Ischemia/metabolism , Particulate Matter/toxicity , Carotid Stenosis/metabolism , Mice, Inbred C57BL
2.
bioRxiv ; 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37034750

The role of reactive iron in Alzheimer's Disease (AD) remains unresolved. Little is known of how AD may alter iron transport, glutathione-mediated oxidative repair, and their associations with ApoE alleles. Postmortem brain intravascular blood was minimized by washing minced brain (n=24/group). HNE from iron-associated lipid peroxidation increased in AD prefrontal cortex by 50% for whole tissue and in subcellular lipid rafts, where Aß-peptides are produced. HNE correlated with iron storage ferritin light chain (FTL; r=0.35); both were higher in ApoE4. Iron chelation by DFO in EFAD mice decreased HNE consistent with ferroptosis. Neuronal and synaptic loss in AD was inversely correlated to FTL (r=-0.55). AD decreased levels of ferroptosis suppressor protein 1, glutamate cysteine ligase modulator subunit (GCLM), and lipid raft glutathione peroxidase 4 (GPx4), mitigators of ferroptosis. These findings provide a mechanistic framework for iron-associated neurodegeneration during AD by impaired lipid peroxidation repair mechanisms involving glutathione.

3.
Int J Mol Sci ; 23(18)2022 Sep 17.
Article En | MEDLINE | ID: mdl-36142809

Non-alcoholic fatty liver disease (NAFLD) affects up to 20% of the world's population. Overactivation of the angiotensin receptor type 1 (AT1) contributes to metabolic dysfunction and increased oxidant production, which are associated with NAFLD and impaired hepatic lipid metabolism. Nuclear factor erythroid-2-related factor 2 (Nrf2) regulates the expression of antioxidant phase II genes by binding to the antioxidant response element (ARE); however, the mechanisms by which AT1 contributes to this pathway during the progression of NAFLD remain unresolved. To investigate hepatic Nrf2 response to a hyperglycemic challenge, we studied three groups of rats (male, 10-weeks-old): (1) untreated, lean Long Evans Tokushima Otsuka (LETO), (2) untreated, obese Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + angiotensin receptor blocker (OLETF + ARB; 10 mg olmesartan/kg/d × 6 weeks). Livers were collected after overnight fasting (T0; baseline), and 1 h and 2 h post-oral glucose load. At baseline, chronic AT1 blockade increased nuclear Nrf2 content, reduced expression of glutamate-cysteine ligase catalytic (GCLC) subunit, glutathione peroxidase 1 (GPx1), and superoxide dismutase 2 (SOD2), mitochondrial catalase activity, and hepatic 4-hydroxy-2-nonenal (4-HNE) content. The expression of hepatic interleukin-1 beta (IL-1ß) and collagen type IV, which are associated with liver fibrosis, were decreased with AT1 blockade. Glucose increased Nrf2 translocation in OLETF but was reduced in ARB, suggesting that glucose induces the need for antioxidant defense that is ameliorated with ARB. These results suggest that overactivation of AT1 promotes oxidant damage by suppressing Nrf2 and contributing to hepatic fibrosis associated with NAFLD development.


Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Antioxidants/pharmacology , Catalase , Collagen Type IV , Glucose/metabolism , Glutamate-Cysteine Ligase , Insulin , Insulin Resistance/physiology , Interleukin-1beta , Male , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Obesity/metabolism , Oxidants/pharmacology , Rats , Receptors, Angiotensin
4.
J Alzheimers Dis ; 89(4): 1263-1278, 2022.
Article En | MEDLINE | ID: mdl-36031897

BACKGROUND: Air pollution particulate matter (PM) is strongly associated with risks of accelerated cognitive decline, dementia and Alzheimer's disease. Ambient PM batches have variable neurotoxicity by collection site and season, which limits replicability of findings within and between research groups for analysis of mechanisms and interventions. Diesel exhaust particles (DEP) offer a replicable model that we define in further detail. OBJECTIVE: Define dose- and time course neurotoxic responses of mice to DEP from the National Institute of Science and Technology (NIST) for neurotoxic responses shared by DEP and ambient PM. METHODS: For dose-response, adult C57BL/6 male mice were exposed to 0, 25, 50, and 100µg/m3 of re-aerosolized DEP (NIST SRM 2975) for 5 h. Then, mice were exposed to 100µg/m3 DEP for 5, 100, and 200 h and assayed for amyloid-ß peptides, inflammation, oxidative damage, and microglial activity and morphology. RESULTS: DEP exposure at 100µg/m3 for 5 h, but not lower doses, caused oxidative damage, complement and microglia activation in cerebral cortex and corpus callosum. Longer DEP exposure for 8 weeks/200 h caused further oxidative damage, increased soluble Aß, white matter injury, and microglial soma enlargement that differed by cortical layer. CONCLUSION: Exposure to 100µg/m3 DEP NIST SRM 2975 caused robust neurotoxic responses that are shared with prior studies using DEP or ambient PM0.2. DEP provides a replicable model to study neurotoxic mechanisms of ambient PM and interventions relevant to cognitive decline and dementia.


Dementia , Neurotoxicity Syndromes , Animals , Dementia/complications , Male , Mice , Mice, Inbred C57BL , Neurotoxicity Syndromes/etiology , Particulate Matter/toxicity , Peptides , Vehicle Emissions/toxicity
5.
Mol Cell Endocrinol ; 555: 111729, 2022 09 15.
Article En | MEDLINE | ID: mdl-35921918

Increased angiotensin II (Ang II) signaling contributes to insulin resistance and liver steatosis. In addition to ameliorating hypertension, angiotensin receptor blockers (ARBs) improve lipid metabolism and hepatic steatosis, which are impaired with metabolic syndrome (MetS). Chronic blockade of the Ang II receptor type 1 (AT1) increases plasma angiotensin 1-7 (Ang 1-7), which mediates mechanisms counterregulatory to AT1 signaling. Elevated plasma Ang 1-7 is associated with decreased plasma triacylglycerol (TAG), cholesterol, glucose, and insulin; however, the benefits of RAS modulation to prevent non-alcoholic fatty liver disease (NAFLD) are not fully investigated. To better address the relationships among chronic ARB treatment, plasma Ang 1-7, and hepatic steatosis, three groups of 10-week-old-rats were studied: (1) untreated lean Long Evans Tokushima Otsuka (LETO), (2) untreated Otsuka Long Evans Tokushima Fatty (OLETF), and (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/d × 6 weeks). Following overnight fasting, rats underwent an acute glucose load to better understand the dynamic metabolic responses during hepatic steatosis and early MetS. Tissues were collected at baseline (pre-load; T0) and 1 and 2 h post-glucose load. AT1 blockade increased plasma Ang 1-7 and decreased liver lipids, which was associated with decreased fatty acid transporter 5 (FATP5) and fatty acid synthase (FASN) expression. AT1 blockade decreased liver glucose and increased glucokinase (GCK) expression. These results demonstrate that during MetS, overactivation of AT1 promotes hepatic lipid deposition that is stimulated by an acute glucose load and lipogenesis genes, suggesting that the chronic hyperglycemia associated with MetS contributes to fatty liver pathologies via an AT1-mediated mechanism.


Diabetes Mellitus, Type 2 , Fatty Liver , Metabolic Syndrome , Angiotensin I , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Animals , Gene Expression , Glucose , Insulin , Lipogenesis , Liver , Obesity , Peptide Fragments , Rats , Rats, Inbred OLETF , Receptor, Angiotensin, Type 1
6.
Antioxidants (Basel) ; 11(5)2022 May 09.
Article En | MEDLINE | ID: mdl-35624791

The onset of type II diabetes increases the heart's susceptibility to oxidative damage because of the associated inflammation and diminished antioxidant response. Transcription factor NF-κB initiates inflammation while Nrf2 controls antioxidant defense. Current evidence suggests crosstalk between these transcription factors that may become dysregulated during type II diabetes mellitus (T2DM) manifestation. The objective of this study was to examine the dynamic changes that occur in both transcription factors and target genes during the progression of T2DM in the heart. Novel UC Davis T2DM (UCD-T2DM) rats at the following states were utilized: (1) lean, control Sprague-Dawley (SD; n = 7), (2) insulin-resistant pre-diabetic UCD-T2DM (Pre; n = 9), (3) 2-week recently diabetic UCD-T2DM (2Wk; n = 9), (4) 3-month diabetic UCD-T2DM (3Mo; n = 14), and (5) 6-month diabetic UCD-T2DM (6Mo; n = 9). NF-κB acetylation increased 2-fold in 3Mo and 6Mo diabetic animals compared to SD and Pre animals. Nox4 protein increased 4-fold by 6Mo compared to SD. Nrf2 translocation increased 82% in Pre compared to SD but fell 47% in 6Mo animals. GCLM protein fell 35% in 6Mo animals compared to Pre. Hmox1 mRNA decreased 45% in 6Mo animals compared to SD. These data suggest that during the progression of T2DM, NF-κB related genes increase while Nrf2 genes are suppressed or unchanged, perpetuating inflammation and a lesser ability to handle an oxidant burden altering the heart's redox state. Collectively, these changes likely contribute to the diabetes-associated cardiovascular complications.

7.
Endocrine ; 75(1): 92-107, 2022 Jan.
Article En | MEDLINE | ID: mdl-34327606

PURPOSE: Angiotensin receptor blockers (ARBs) can ameliorate metabolic syndrome (MetS)-associated dyslipidemia, hepatic steatosis, and glucose intolerance, suggesting that angiotensin receptor (AT1) over-activation contributes to impaired lipid and glucose metabolism, which is characteristic of MetS. The aim of this study was to evaluate changes in the lipid profile and proteins of fatty acid uptake, triacylglycerol (TAG) synthesis, and ß-oxidation to better understand the links between AT1 overactivation and non-alcoholic fatty liver disease (NAFLD) during MetS. METHODS: Four groups of 25-week-old-rats were used: (1) untreated LETO, (2) untreated OLETF, (3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 weeks) and (4) OLETF ± ARB (MINUS; 10 mg olmesartan/kg/d × 4 weeks, then removed until dissection). To investigate the dynamic shifts in metabolism, animals were dissected after an oral glucose challenge (fasting, 3 and 6 h post-glucose). RESULTS: Compared to OLETF, plasma total cholesterol and TAG remained unchanged in ARB. However, liver TAG was 55% lesser in ARB than OLETF, and remained lower throughout the challenge. Basal CD36 and ApoB were 28% and 29% lesser, respectively, in ARB than OLETF. PRDX6 abundance in ARB was 45% lesser than OLETF, and it negatively correlated with liver TAG in ARB. CONCLUSIONS: Chronic blockade of AT1 protects the liver from TAG accumulation during glucose overload. This may be achieved by modulating NEFA uptake and increasing TAG export via ApoB. Our study highlights the contributions of AT1 signaling to impaired hepatic substrate metabolism and the detriments of a high-glucose load and its potential contribution to steatosis during MetS.


Angiotensin II Type 1 Receptor Blockers , Insulin Resistance , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Blood Glucose/metabolism , Glucose/metabolism , Insulin/metabolism , Liver/metabolism , Obesity/metabolism , Rats , Rats, Inbred OLETF , Rats, Long-Evans , Receptor, Angiotensin, Type 1/metabolism , Triglycerides/metabolism
8.
Am J Physiol Endocrinol Metab ; 321(5): E714-E727, 2021 11 01.
Article En | MEDLINE | ID: mdl-34658252

Inappropriate activation of the renin-angiotensin system decreases glucose uptake in peripheral tissues. Chronic angiotensin receptor type 1 (AT1) blockade (ARB) increases glucose uptake in skeletal muscle and decreases the abundance of large adipocytes and macrophage infiltration in adipose. However, the contributions of each tissue to the improvement in hyperglycemia in response to AT1 blockade are not known. Therefore, we determined the static and dynamic responses of soleus muscle, liver, and adipose to an acute glucose challenge following the chronic blockade of AT1. We measured adipocyte morphology along with TNF-α expression, F4/80- and CD11c-positive cells in adipose and measured insulin receptor (IR) phosphorylation and AKT phosphorylation in soleus muscle, liver, and retroperitoneal fat before (T0), 60 (T60) and 120 (T120) min after an acute glucose challenge in the following groups of male rats: 1) Long-Evans Tokushima Otsuka (LETO; lean control; n = 5/time point), 2) obese Otsuka Long Evans Tokushima Fatty (OLETF; n = 7 or 8/time point), and 3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day; n = 7 or 8/time point). AT1 blockade decreased adipocyte TNF-α expression and F4/80- and CD11c-positive cells. In retroperitoneal fat at T60, IR phosphorylation was 155% greater in ARB than in OLETF. Furthermore, in retroperitoneal fat AT1 blockade increased glucose transporter-4 (GLUT4) protein expression in ARB compared with OLETF. IR phosphorylation and AKT phosphorylation were not altered in the liver of OLETF, but AT1 blockade decreased hepatic Pck1 and G6pc1 mRNA expressions. Collectively, these results suggest that chronic AT1 blockade improves obesity-associated hyperglycemia in OLETF rats by improving adipocyte function and by decreasing hepatic glucose production via gluconeogenesis.NEW & NOTEWORTHY Inappropriate activation of the renin-angiotensin system increases adipocyte inflammation contributing to the impairment in adipocyte function and increases hepatic Pck1 and G6pc1 mRNA expression in response to a glucose challenge. Ultimately, these effects may contribute to the development of glucose intolerance.


Adipose Tissue/drug effects , Angiotensin II Type 1 Receptor Blockers/pharmacology , Inflammation/prevention & control , Liver/drug effects , Obesity , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Animals , Gene Expression/drug effects , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Imidazoles/pharmacology , Imidazoles/therapeutic use , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Male , Obesity/complications , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Rats , Rats, Inbred OLETF , Rats, Long-Evans , Receptor, Angiotensin, Type 1/metabolism , Tetrazoles/pharmacology , Tetrazoles/therapeutic use
9.
Clin Exp Pharmacol Physiol ; 47(3): 422-431, 2020 03.
Article En | MEDLINE | ID: mdl-31675433

Insulin resistance increases renal oxidant production by upregulating NADPH oxidase 4 (Nox4) expression contributing to oxidative damage and ultimately albuminuria. Inhibition of the renin-angiotensin system (RAS) and activation of glucagon-like peptide-1 (GLP-1) receptor signalling may reverse this effect. However, whether angiotensin receptor type 1 (AT1) blockade and GLP-1 receptor activation improve oxidative damage and albuminuria through different mechanisms is not known. Using insulin-resistant Otsuka Long-Evans Tokushima Fatty (OLETF) rats, we tested the hypothesis that simultaneous blockade of AT1 and activation of GLP-1r additively decrease oxidative damage and urinary albumin excretion (Ualb V) in the following groups: (a) untreated, lean LETO (n = 7), (b) untreated, obese OLETF (n = 9), (c) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d; n = 9), (d) OLETF + GLP-1 mimetic (EXE; 10 µg exenatide/kg/d; n = 7) and (e) OLETF + ARB +exenatide (Combo; n = 6). Mean kidney Nox4 protein expression and nitrotyrosine (NT) levels were 30% and 46% greater, respectively, in OLETF compared with LETO. Conversely, Nox4 protein expression and NT were reduced to LETO levels in ARB and EXE, and Combo reduced Nox4, NT and 4-hydroxy-2-nonenal levels by 21%, 27% and 27%, respectively. At baseline, Ualb V was nearly double in OLETF compared with LETO and increased to nearly 10-fold greater levels by the end of the study. Whereas ARB (45%) and EXE (55%) individually reduced Ualb V, the combination completely ameliorated the albuminuria. Collectively, these data suggest that AT1 blockade and GLP-1 receptor activation reduce renal oxidative damage similarly during insulin resistance, whereas targeting both signalling pathways provides added benefit in restoring and/or further ameliorating albuminuria in a model of diet-induced obesity.


Albuminuria/metabolism , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Anti-Obesity Agents/administration & dosage , Glucagon-Like Peptide-1 Receptor/metabolism , Insulin Resistance/physiology , Obesity/metabolism , Albuminuria/drug therapy , Animals , Exenatide/administration & dosage , Glucagon-Like Peptide-1 Receptor/agonists , Male , Obesity/drug therapy , Rats , Rats, Inbred OLETF , Rats, Long-Evans
10.
Free Radic Biol Med ; 130: 306-317, 2019 01.
Article En | MEDLINE | ID: mdl-30316779

Diabetic hearts are susceptible to damage from inappropriate activation of the renin angiotensin system (RAS) and hyperglycemic events both of which contribute to increased oxidant production. Prolonged elevation of oxidants impairs mitochondrial enzyme function, further contributing to metabolic derangement. Nuclear factor erythriod-2-related factor 2 (Nrf2) induces antioxidant genes including those for glutathione (GSH) synthesis following translocation to the nucleus. We hypothesized that an acute elevation in glucose impairs Nrf2-related gene expression in diabetic hearts, while AT1 antagonism would aid in Nrf2-mediated antioxidant production and energy replenishment. We used four groups (n = 6-8/group) of 25-week-old rats: 1) LETO (lean strain-control), 2) type II diabetic OLETF, 3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 wks), and 4) ARBM (4 weeks on ARB, 4 weeks off) to study the effects of acutely elevated glucose on cardiac mitochondrial function and Nrf2 signaling in the diabetic heart. Animals were gavaged with a glucose bolus (2 g/kg) and groups were dissected at T0, T180, and T360 minutes. Nrf2 mRNA was 32% lower in OLETF rats compared to LETO and remained suppressed in response to glucose. LETO Nrf2 mRNA increased 25% at T360 in response to glucose while no changes were observed in diabetic hearts. GCLC and GCLM mRNA decreased in diabetic hearts 33% and 44% respectively and remained suppressed in response to glucose while ARB treatment increased GCLM transcripts 90% at T180. These data illustrate that during T2DM and in response to glucose, cardiac Nrf2's adaptive response to environmental stressors such as glucose is impaired in diabetic hearts and that ARB treatment may aid Nrf2's impaired dynamic response.


Angiotensin II Type 1 Receptor Blockers/pharmacology , Antioxidants/pharmacology , Diabetes Mellitus, Type 2/genetics , NF-E2-Related Factor 2/genetics , Receptor, Angiotensin, Type 1/genetics , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Gene Expression Regulation/drug effects , Glucose/metabolism , Glutathione/biosynthesis , Heart/drug effects , Humans , Insulin Resistance/genetics , Oxidants/pharmacology , Oxidative Stress/genetics , Rats , Renin-Angiotensin System/drug effects , Signal Transduction/drug effects
11.
Hypertens Res ; 41(10): 798-808, 2018 Oct.
Article En | MEDLINE | ID: mdl-29985448

Obesity is associated with an inappropriately activated renin-angiotensin-aldosterone system, suppressed glucagon-like peptide-1 (GLP-1), increased renal Na+ reabsorption, and hypertension. To assess the link between GLP-1 and angiotensin receptor type 1 (AT1) signaling on obesity-associated impairment of urinary Na+ excretion (UNaV) and elevated arterial pressure, we measured mean arterial pressure (MAP) and heart rate by radiotelemetry and metabolic parameters for 40 days. We tested the hypothesis that stimulation of GLP-1 signaling provides added benefit to blockade of AT1 by increasing UNaV and further reducing arterial pressure in the following groups: (1) untreated Long-Evans Tokushima Otsuka (LETO) rats (n = 7); (2) untreated Otsuka Long-Evans Tokushima Fatty (OLETF) rats (n = 9); (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day; n = 9); (4) OLETF + GLP-1 receptor agonist (EXE; 10 µg exenatide/kg/day; n = 7); and (5) OLETF + ARB + EXE (Combo; n = 6). On day 2, UNaV was 60% and 62% reduced in the EXE and Combo groups, respectively, compared with that in the OLETF rats. On day 40, UNaV was increased 69% in the Combo group compared with that in the OLETF group. On day 40, urinary angiotensinogen was 4.5-fold greater in the OLETF than in the LETO group and was 56%, 62%, and 58% lower in the ARB, EXE, and Combo groups, respectively, than in the OLETF group. From day 2 to the end of the study, MAP was lower in the ARB and Combo groups than in the OLETF rats. These results suggest that GLP-1 receptor activation may reduce intrarenal angiotensin II activity, and that simultaneous blockade of AT1 increases UNaV in obesity; however, these beneficial effects do not translate to a further reduction in MAP.


Angiotensin II Type 1 Receptor Blockers/pharmacology , Arterial Pressure/drug effects , Glucagon-Like Peptide-1 Receptor/agonists , Natriuresis/drug effects , Obesity/physiopathology , Animals , Arterial Pressure/physiology , Exenatide/pharmacology , Heart Rate/drug effects , Heart Rate/physiology , Rats , Rats, Inbred OLETF , Rats, Long-Evans
12.
Article En | MEDLINE | ID: mdl-30041062

Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that induces genes involved in glucose metabolism. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive ß-subunit (HIF-1ß). The white spot syndrome virus (WSSV) induces a shift in glucose metabolism and oxidative stress. HIF-1α is associated with the induction of metabolic changes in tissues of WSSV-infected shrimp. However, the contributions of HIF-1 to viral load and antioxidant responses in WSSV-infected shrimp have been not examined. In this study, the effect of HIF-1 silencing on viral load and the expression and activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione S-transferase-GST, and catalase) along with oxidative damage (lipid peroxidation and protein carbonyl) in tissues of white shrimp infected with the WSSV were studied. The viral load increased in hepatopancreas and muscle after WSSV infection, and the accumulative mortality was of 100% at 72 h post-infection. The expression and activity of SOD, catalase, and GST decreased in each tissue evaluated after WSSV infection. Protein carbonyl concentrations increased in each tissue after WSSV infection, while lipid peroxidation increased in hepatopancreas, but not in muscle. Silencing of HIF-1α decreased the WSSV viral load in hepatopancreas and muscle of infected shrimp along with shrimp mortality. Silencing of HIF-1α ameliorated the antioxidant response in a tissue-specific manner, which translated to a decrease in oxidative damage. These results suggest that HIF-1 is essential for restoring the antioxidant response, which counters the oxidative injury associated with WSSV infection.


Gene Expression Regulation, Developmental , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Penaeidae/virology , White spot syndrome virus 1/pathogenicity , Animals , Aquaculture , DNA, Viral/isolation & purification , Gene Silencing , Hepatopancreas/growth & development , Hepatopancreas/metabolism , Hepatopancreas/virology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Injections, Intramuscular , Lipid Peroxidation , Mexico , Muscles/metabolism , Muscles/virology , Organ Specificity , Oxidative Stress , Oxidoreductases/genetics , Oxidoreductases/metabolism , Penaeidae/growth & development , Penaeidae/metabolism , Protein Carbonylation , RNA Interference , RNA, Double-Stranded/administration & dosage , RNA, Double-Stranded/metabolism , Viral Load , White spot syndrome virus 1/isolation & purification , White spot syndrome virus 1/physiology
13.
Gene ; 591(2): 376-81, 2016 Oct 15.
Article En | MEDLINE | ID: mdl-27312951

Hypoxia inducible factor 1-α (HIF-1α) and peroxisome proliferator-activated receptor γ (PPARγ) are transcription factors that activate genes involved in cellular metabolism. Physiological cardiac hypertrophy induced by pregnancy initiates compensatory changes in metabolism. However, the contributions of HIF-1α and PPARγ to this physiological status and to its reversible, metabolic process (postpartum) in the heart are not well-defined. Therefore, the aim of the present study was to evaluate the transcriptional activities of HIF-1α and PPARγ in the left ventricle of rats before, during, and after pregnancy. Furthermore, the effects of pregnancy on target genes of glycolysis and glycerol-lipid biosynthesis, key regulatory enzymes, and metabolic intermediates were evaluated. The activities of HIF-1α and PPARγ increased 1.2- and 1.6-fold, respectively, during pregnancy, and decreased to basal levels during postpartum. Expressions of mRNA for glucose transport 1 (GLUT1), enzymes of glycolysis (HK2, PFKM, and GAPDH) and glycerol-lipid biosynthesis (GPAT and GPD1) increased 1.6- to 14-fold during pregnancy and returned to basal levels postpartum. The increase in GPD1 expression translated to an increase in its activity, but such was not the case for GAPDH suggesting that post-translational regulation of these proteins is differential during pregnancy. Glycolytic (glucose, lactate, and DHAP) and glycerol-lipid biosynthesis (G3P and FFA) intermediates increased with pregnancy and were maintained postpartum. The results demonstrate that pregnancy-induced, physiological cardiac hypertrophy activates the expression of genes involved in glycolytic and glycerol-lipid biosynthesis suggesting that the shift in cardiac metabolism is mediated by the activation of HIF-1α and PPARγ.


Cardiovascular Physiological Phenomena/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , PPAR gamma/genetics , Pregnancy, Animal/physiology , Animals , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycerol-3-Phosphate Dehydrogenase (NAD+)/metabolism , Heart Ventricles/enzymology , Heart Ventricles/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Organ Size , PPAR gamma/metabolism , Pregnancy , RNA, Messenger , Rats , Rats, Sprague-Dawley , Transcription, Genetic
...