Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Turk J Pharm Sci ; 18(4): 483-491, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496555

RESUMEN

Objectives: Normal and chronic wound healing is a global challenge. Electrotherapy has emerged as a novel and efficient technique for treating such wounds in recent decades. Hydrogel applied to the wound to uniformly distribute the electric current is an important component in wound healing electrotherapy. This study reports the development and wound healing efficacy testing of vitamin D entrapped polyaniline (PANI)-chitosan composite hydrogel for electrotherapy. Materials and Methods: To determine the morphological and physicochemical properties, techniques like scanning electron microscopy (SEM); differential scanning calorimetry; X-ray diffraction; fourier-transform infrared spectroscopy were used. Moreover, pH, conductance, viscosity, and porosity were measured to optimize and characterize the vitamin D entrapped PANI-chitosan composite hydrogel. The biodegradation was studied using lysozyme, whereas the water uptake ability was studied using phosphate buffer. Ethanolic phosphate buffer was used to perform the vitamin D entrapment and release study. Cell adhesion, proliferation, and electrical stimulation experiments were conducted by seeding dental pulp stem cells (DPSC) into the scaffolds and performing (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay; SEM images were taken to corroborated the proliferation results. The wound healing efficacy of electrotherapy and the developed hydrogel were studied on excision wound healing model in rats, and the scarfree wound healing was further validated by histopathology analysis. Results: The composition of the developed hydrogel was optimized to include 1% w/v PANI and 2% w/v of chitosan composite. This hydrogel showed 1455 µA conduction, 98.97% entrapment efficiency and 99.12% release of vitamin D in 48 hrs. The optimized hydrogel formulation showed neutral pH of 6.96 and had 2198 CP viscosity at 26°C. The hydrogel showed 652.4% swelling index and 100% degradation in 4 weeks. The in vitro cell culture studies performed on hydrogel scaffolds using DPSC and electric stimulation strongly suggested that electrical stimulation enhances the cell proliferation in a three-dimensional (3D) scaffold environment. The in vivo excision wound healing studies also supported the in vitro results suggesting that electrical stimulation of the wound in the presence of the conducting hydrogel and growth factors like vitamin D heals the wound much faster (within 12 days) compared to non-treated control wounds (requires 21 days for complete healing). Conclusion: The results strongly suggested that the developed PANI-chitosan composite conducting hydrogel acts effectively as an electric current carrier to distribute the current uniformly across the wound surface. It also acted as a drug delivery vehicle for delivering vitamin D to the wound. The hydrogel provided a moist environment, a 3D matrix for free migration of the cells, and antimicrobial activity due to chitosan, all of which contributed to the electrotherapy's faster wound healing mechanism, confirmed through the in vitro and in vivo experiments.

2.
Turk J Pharm Sci ; 18(3): 367-375, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34157828

RESUMEN

Objectives: This work illustrates a novel method of fabrication of polymeric microneedle (MN) construct using bees wax as mould and development of coated polymeric MNs for drug delivery. Materials and Methods: A novel method of MN fabrication using bees wax as mould was established. The porous chitosan MN arrays were fabricated and coated with polylactic acid (PLA). The optimized MN arrays were coated with bovine serum albumin (BSA). The MNs were subjected to physiochemical and tensile strength characterization, followed by drug release study. The skin penetration and irritation study were performed in vivo in Wistar Albino rats. Results: The constructed MN arrays contain MNs with 0.9 mm length, 600 µm width at the base, 30-60 µm diameter at the tip, and 1.5 mm distance between 2 needles. These MNs patch was having good mechanical strength (0.72 N/needle) and tensile strength 15.23 Mpa. The MN array patch had 6.26% swelling index and 98.5% drug release was observed on the 50th hr. Good penetration and no skin irritation was observed for optimized MN batch. Conclusion: Polymeric MN arrays were successfully developed using bees wax mould and were successfully coated with PLA to deliver the BSA through skin epidermis layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA