Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 27(13): 8404-14, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21630693

RESUMEN

The origin of the buckling of micrometer-sized colloidal droplets during evaporation-induced self-assembly (EISA) has been elucidated using electron microscopy and small-angle neutron scattering. Doughnut-like assembled grains with varying aspect ratios are formed during EISA at different physicochemical conditions. It has been revealed that this phenomenon is better explained by an existing hypothesis based on the formation of a viscoelastic shell of nanoparticles during drying than by other existing hypotheses based on the inertial instability of the initial droplets and hydrodynamic instability due to thermocapillary forces. This conclusion was further supported by the arrest of buckling through modification of the colloidal interaction in the initial dispersion.

2.
Nanotechnology ; 20(20): 204003, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19420651

RESUMEN

Reactive hydride composites (RHCs) are very promising hydrogen storage materials for future applications due to their reduced reaction enthalpies and high gravimetric capacities. At present, the materials' functionality is limited by the reaction kinetics. A significant positive influence can be observed with addition of transition-metal-based additives. To understand the effect of these additives, the chemical state and changes during the reaction as well as the microstructural distribution were investigated using x-ray absorption near-edge structure (XANES) spectroscopy and anomalous small-angle x-ray scattering (ASAXS). In this work, zirconium- and vanadium-based additives were added to 2LiBH4-MgH2 composites and 2LiH-MgB2 composites and measured in the vicinity of the corresponding absorption edge. The measurements reveal the formation of finely distributed zirconium diboride and vanadium-based nanoparticles. The potential mechanisms for the observed influence on the reaction kinetics are discussed.


Asunto(s)
Hidrógeno/química , Hidrógeno/aislamiento & purificación , Modelos Químicos , Nanoestructuras/química , Nanotecnología/métodos , Vanadio/química , Circonio/química , Simulación por Computador , Suministros de Energía Eléctrica , Nanoestructuras/ultraestructura , Tamaño de la Partícula
3.
J Chem Phys ; 127(15): 154908, 2007 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-17949215

RESUMEN

The shrinking process of anionic sodium polyacrylate (NaPA) chains in aqueous solution induced by Sr2+ counterions was analyzed by anomalous small-angle x-ray scattering. Scattering experiments were performed close to the precipitation threshold of strontium polyacrylate. The pure-resonant scattering contribution, which is related to the structural distribution of the Sr2+ counterions, was used to analyze the extent of Sr2+ condensation onto the polyacrylate coils. A series of four samples with different ratios [Sr2+][NaPA] (between 0.451 and 0.464) has been investigated. From the quantitative analysis of the resonant invariant, the amount of Sr cations localized in the collapsed phase was calculated with concentrations v between 0.94x10(17) and 2.01x10(17) cm(-3) corresponding to an amount of Sr cations in the collapsed phase between 9% and 23% of the total Sr2+ cations in solution. If compared to the concentration of polyacrylate expressed in moles of monomers [NaPA], a degree of site binding of r=[Sr2+][NaPA] between 0.05 and 0.11 was estimated. These values clearly differ from r=0.25, which was established from former light scattering experiments, indicating that the counterion condensation starts before the phase border is reached and increases rather sharply at the border.

4.
Eur Phys J E Soft Matter ; 21(2): 99-110, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17149548

RESUMEN

Anionic polyacrylate chains (NaPA) form precipitates if alkaline earth cations are added in stoichiometric amounts. Accordingly, precipitation thresholds were established for three different alkaline earth cations Ca(2+), Sr(2+) and Ba(2+). Close to the precipitation threshold, the NaPA chains significantly decrease in size. This shrinking process was followed by means of combined static and dynamic light scattering. Intermediates were generated by varying the ratio [MCl(2)]/[NaPA] with M denoting the respective alkaline earth cation. All experiments were performed at an inert salt level of 0.01M NaCl. Similar coil-to-sphere transitions could be observed with all three alkaline earth cations Ca(2+), Sr(2+) and Ba(2+). Based on these findings, supplementary conventional and anomalous small-angle X-ray scattering experiments using selected intermediates close to the precipitation threshold of SrPA were performed. The distribution of Sr counterions around the polyacrylate chains in aqueous solution provided the desired scattering contrast. Energy-dependent scattering experiments enabled successful separation of the pure-resonant terms, which solely stem from the counterions. The Sr(2+) scattering roughly reflects the monomer distribution of the polyacrylate chains. Different ratios of the concentrations of [ SrCl(2)]/[NaPA] revealed dramatic changes in the scattering curves. The scattering curve at the lowest ratio indicated an almost coil-like behaviour, while at the higher ratios the scattering curves supported the model of highly contracted polymer chains. Most of X-ray scattering experiments on intermediate states revealed compact structural elements which were significantly smaller than the respective overall size of the NaPA particles.


Asunto(s)
Resinas Acrílicas/química , Bario/química , Calcio/química , Ensayo de Materiales , Estroncio/química , Aniones , Cationes Bivalentes , Precipitación Química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
5.
J Colloid Interface Sci ; 294(2): 309-20, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16125187

RESUMEN

The microstructure-dependence of dip-coated particulate thin films on the stability of an aqueous silica sol used as coating bath is studied. Different stability conditions are adjusted in the sol by changing electrolyte concentration and pH value. Care was taken to avoid pronounced aggregation of the particles before the coating process. The characterization of the stability behavior gives clear evidence of a non-DLVO contribution at low pH values that is attributed to hydration forces. Structural evolution of the particulate network during film formation is studied using a dialysis accumulation procedure. The viscosity of the accumulated sol is measured as a function of shear rate and related to the drying characteristic of the coating process. Atomic force microscopy (AFM), small-angle X-ray scattering (SAXS) and N2 sorption are used to obtain information on the surface and volume structure of the dip-coated films. The structure of coatings is found to distinctly vary with stability parameters. This is attributed to changing interactions during the first drying stage. Finally, the influence of coating structures on the light transmission properties is determined. A comparison between the extinction of the uncoated and the coated substrate revealed a difference of up to +/-50% in dependence on the microstructure.

6.
Eur Phys J E Soft Matter ; 8(3): 299-309, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15010951

RESUMEN

An investigation of the radial distribution of the counterions of a synthetic rodlike polyelectrolyte in aqueous solution is presented. The cationic polyelectrolyte used here has a poly(p-phenylene) backbone. For typical molecular weights the macroion comprises approximately one persistence length (ca. 20 nm) and effects of finite stiffness may be disregarded. Each repeating unit bears four charges which leads to a charge parameter of xi = 6.65. The distribution of the iodide counterions around this highly charged macroion is studied by small-angle X-ray scattering (SAXS) in dilute aqueous solution. These investigations are supplemented by measurements using anomalous small-angle X-ray scattering (ASAXS) that furnishes additional information about the contrast of the macroion. Data taken at high scattering angles give indication for contributions caused by the longitudinal fluctuations of the counterions. After correction for this effect the experimental results are compared to intensities calculated by use of the Poisson-Boltzmann (PB)-cell model. It is found that the PB-cell model describes the corrected data at intermediate and high scattering angles. Deviations at low scattering angle are attributed to the mutual interaction of the rod-like polyelectrolyte that can be described in terms of an effective structure factor. Data taken at lowest scattering angles point to a weak attraction between the rod-like macroions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA