Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virol J ; 17(1): 160, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087160

RESUMEN

BACKGROUND: Fast, reliable and easy to handle methods are required to facilitate urgently needed point-of-care testing (POCT) in the current coronavirus pandemic. Life-threatening severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world, infecting more than 33,500,000 people and killing over 1 million of them as of October 2020. Infected individuals without any symptoms might still transfer the virus to others underlining the extraordinary transmissibility of this new coronavirus. In order to identify early infections effectively, treat patients on time and control disease spreading, rapid, accurate and onsite testing methods are urgently required. RESULTS: Here we report the development of a loop-mediated isothermal amplification (LAMP) based method to detect SARS-CoV-2 genes ORF8 and N directly from pharyngeal swab samples. The established reverse transcription LAMP (RT-LAMP) assay detects SARS-CoV-2 directly from pharyngeal swab samples without previous time-consuming and laborious RNA extraction. The assay is sensitive and highly specific for SARS-CoV-2 detection, showing no cross reactivity when tested on 20 other respiratory pathogens. The assay is 12 times faster and 10 times cheaper than routine reverse transcription real-time polymerase chain reaction, depending on the assay used. CONCLUSION: The fast and easy to handle RT-LAMP assay amplifying specifically the genomic regions ORF8 and N of SARS-CoV-2 is ideally suited for POCT at e.g. railway stations, airports or hospitals. Given the current pandemic situation, rapid, cost efficient and onsite methods like the here presented RT-LAMP assay are urgently needed to contain the viral spread.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Animales , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , Chlorocebus aethiops , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Genes Virales , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , Neumonía Viral/diagnóstico , Sistemas de Atención de Punto , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Reversa , SARS-CoV-2 , Células Vero
2.
Front Plant Sci ; 11: 1047, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760413

RESUMEN

Petunia plants with unusual orange flowers were noticed on the European market and confirmed to be genetically modified (GM) by the Finnish authorities in spring 2017. Later in 2017, inspections and controls performed by several official laboratories of national competent authorities in the European Union detected several GM petunia varieties with orange flowers, but also another group of unusually colored flowers. In the latter group, a so far undetected gene coding for a flavonoid 3'5' hydroxylase (F3'5'H) responsible for the purple color was identified by German and Dutch authorities, suggesting that the petunias found on the markets contain different genetic constructs. Here, a strategy is described for the identification of GM petunia varieties. It is based on an initial GMO screening for known elements using (real-time) PCR and subsequent identification of the insertion sites by a gene walking-like approach called ALF (amplification of linearly-enriched fragments) in combination with Sanger and MinION sequencing. The results indicate that the positively identified GM petunias can be traced back to two dissimilar GM events used for breeding of the different varieties. The test results also confirm that the transgenic petunia event RL01-17 used in the first German field trial in 1991 is not the origin of the GM petunias sold on the market. On basis of the obtained sequence data, event-specific real-time PCR confirmatory methods were developed and validated. These methods are applicable for the rapid detection and identification of GM petunias in routine analysis. In addition, a decision support system was developed for revealing the most likely origin of the GM petunia.

3.
Food Chem ; 149: 302-6, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24295710

RESUMEN

In recent years, honey has become subject of DNA analysis due to potential risks evoked by microorganisms, allergens or genetically modified organisms. However, so far, only a few DNA extraction procedures are available, mostly time-consuming and laborious. Therefore, we developed an automated DNA extraction method from pollen in honey based on a CTAB buffer-based DNA extraction using the Maxwell 16 instrument and the Maxwell 16 FFS Nucleic Acid Extraction System, Custom-Kit. We altered several components and extraction parameters and compared the optimised method with a manual CTAB buffer-based DNA isolation method. The automated DNA extraction was faster and resulted in higher DNA yield and sufficient DNA purity. Real-time PCR results obtained after automated DNA extraction are comparable to results after manual DNA extraction. No PCR inhibition was observed. The applicability of this method was further successfully confirmed by analysis of different routine honey samples.


Asunto(s)
Automatización/métodos , Fraccionamiento Químico/métodos , ADN/aislamiento & purificación , Contaminación de Alimentos/análisis , Miel/análisis , Polen/química , ADN/genética , Miel/microbiología , Polen/microbiología , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...