Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10094, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698200

RESUMEN

Intramuscular fat (IMF) and backfat thickness (BFT) are critical economic traits impacting meat quality. However, the genetic variants controlling these traits need to be better understood. To advance knowledge in this area, we integrated RNA-seq and single nucleotide polymorphisms (SNPs) identified in genomic and transcriptomic data to generate a linkage disequilibrium filtered panel of 553,581 variants. Expression quantitative trait loci (eQTL) analysis revealed 36,916 cis-eQTLs and 14,408 trans-eQTLs. Association analysis resulted in three eQTLs associated with BFT and 24 with IMF. Functional enrichment analysis of genes regulated by these 27 eQTLs revealed noteworthy pathways that can play a fundamental role in lipid metabolism and fat deposition, such as immune response, cytoskeleton remodeling, iron transport, and phospholipid metabolism. We next used ATAC-Seq assay to identify and overlap eQTL and open chromatin regions. Six eQTLs were in regulatory regions, four in predicted insulators and possible CCCTC-binding factor DNA binding sites, one in an active enhancer region, and the last in a low signal region. Our results provided novel insights into the transcriptional regulation of IMF and BFT, unraveling putative regulatory variants.


Asunto(s)
Cromatina , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Bovinos , Cromatina/genética , Cromatina/metabolismo , Tejido Adiposo/metabolismo , Mutación , Desequilibrio de Ligamiento , Estudio de Asociación del Genoma Completo , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética
2.
Front Cell Dev Biol ; 12: 1324584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655067

RESUMEN

ASCL1 is a transcription factor that directs neural progenitors towards lineage differentiation. Although many of the molecular mechanisms underlying its action have been described, several of its targets remain unidentified. We identified in the chick genome a putative enhancer (cE1) upstream of the transcription factor Scratch2 (Scrt2) locus with a predicted heterodimerization motif for ASCL1 and POU3F2. In this study, we investigated the role of ASCL1 and this enhancer in regulating the expression of the Scrt2 in the embryonic spinal cord. We confirmed that cE1 region interacted with the Scrt2 promoter. cE1 was sufficient to mediate ASCL1-driven expression in the neural tube through the heterodimerization sites. Moreover, Scrt2 expression was inhibited when we removed cE1 from the genome. These findings strongly indicate that ASCL1 regulates Scrt2 transcription in the neural tube through cE1.

3.
J Cell Physiol ; 238(10): 2304-2315, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37555566

RESUMEN

Gastrointestinal epithelial cells respond to milk-born molecules throughout breastfeeding, influencing growth, and development. The rapid renewal of the small intestine depends on the proliferation in the crypt that drives cell fates. We used early weaning model to investigate immediate and late effects of breastfeeding on proliferation, differentiation of jejunal epithelial cells. Wistar rats were either allowed to suckle (S) until 21 postnatal days or submitted to early weaning (EW) at 15 days. By comparing ages (18, 60, and 120 days), we found that EW decreased Ki67 indices and villi height at 18 and 60 days (p < 0.05), and at 120 days they were similar between diets. Proliferative reduction and augmented expression of Cdkn1b (p27 gene) were parallel. In the stem cell niche, EW increased the number and activity (Defa24) of Paneth cells at 18 and 60 days (p < 0.05), and Lgr5 and Ascl2 genes showed inverted responses between ages. Among target cells, EW decreased goblet cell number at 18 and 60 days (p < 0.05) and increased it at 120 days (p < 0.05), whereas enteroendocrine marker genes were differentially altered. EW reduced enterocytes density at 18 days (p < 0.05), and at 120 days this population was decreased (vs. 60 days). Among cell fate crypt-controlling genes, Notch and Atoh1 were the main targets of EW. Metabolically, intraperitoneal glucose tolerance was immediately reduced (18 days), being reverted until 120 days (p < 0.05). Currently, we showed that breastfeeding has a lifespan influence on intestinal mucosa and on its stem cell compartment. We suggest that, although jejunum absorptive function is granted after early weaning, the long lasting changes in gene expression might prime the mucosa with a different sensitivity to gut disorders that still have to be further explored.

4.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194909, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36682583

RESUMEN

Protein kinase M zeta, PKMζ, is a brain enriched kinase with a well characterized role in Long-Term Potentiation (LTP), the activity-dependent strengthening of synapses involved in long-term memory formation. However, little is known about the molecular mechanisms that maintain the tissue specificity of this kinase. Here, we characterized the epigenetic factors, mainly DNA methylation, regulating PKMζ expression in the human brain. The PRKCZ gene has an upstream promoter regulating Protein kinase C ζ (PKCζ), and an internal promoter driving PKMζ expression. A demethylated region, including a canonical CREB binding site, situated at the internal promoter was only observed in human CNS tissues. The induction of site-specific hypermethylation of this region resulted in decreased CREB1 binding and downregulation of PKMζ expression. Noteworthy, CREB binding sites were absent in the upstream promoter of PRKCZ locus, suggesting a specific mechanism for regulating PKMζ expression. These observations were validated using a system of human neuronal differentiation from induced pluripotent stem cells (iPSCs). CREB1 binding at the internal promoter was detected only in differentiated neurons, where PKMζ is expressed. The same epigenetic mechanism in the context of CREB binding site was identified in other genes involved in neuronal differentiation and LTP. Additionally, aberrant DNA hypermethylation at the internal promoter was observed in cases of Alzheimer's disease, correlating with decreased expression of PKMζ in patient brains. Altogether, we present a conserved epigenetic mechanism regulating PKMζ expression and other genes enhanced in the CNS with possible implications in neuronal differentiation and Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Metilación de ADN , Epigénesis Genética , Potenciación a Largo Plazo/fisiología , Encéfalo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética
5.
Methods Mol Biol ; 2599: 227-239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36427153

RESUMEN

Gene expression reporter assays measure the relevance of cis-regulatory elements and DNA-binding proteins in modulating transcriptional activity. Commonly, they are performed in cell lines. However, regulation of transcriptional activity during development is complex and dynamic, and not many cell lines reproduce the embryonic conditions. Thus, conclusions derived from cell line data provide limited information about embryonic development. On the other hand, one of the major hurdles for embryonic assays is delivering reporter plasmids in a tissue-specific manner. In this sense, the chick embryo is a good model system to perform these assays. Electroporation of chick embryos provides temporal and spatially controlled plasmid delivery. Further, it is a well-established, easy, and an economical procedure. Here, we describe in detail how to measure in the chick neural tube (1) enhancer activity with GFP, (2) enhancer activity with luciferase, and (3) 3'UTR activity with luciferase.


Asunto(s)
Embrión de Mamíferos , Secuencias Reguladoras de Ácidos Nucleicos , Embrión de Pollo , Animales , Femenino , Secuencias Reguladoras de Ácidos Nucleicos/genética , Bioensayo , Desarrollo Embrionario , Proteínas de Unión al ADN
6.
Sci Rep ; 12(1): 11854, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831373

RESUMEN

The COVID-19 has severely affected economies and health systems around the world. Mass testing could work as a powerful alternative to restrain disease dissemination, but the shortage of reagents is a limiting factor. A solution to optimize test usage relies on 'grouping' or 'pooling' strategies, which combine a set of individuals in a single reaction. To compare different group testing configurations, we developed the poolingr package, which performs an innovative hybrid in silico/in vitro approach to search for optimal testing configurations. We used 6759 viral load values, observed in 2389 positive individuals, to simulate a wide range of scenarios. We found that larger groups (>100) framed into multi-stage setups (up to six stages) could largely boost the power to detect spreaders. Although the boost was dependent on the disease prevalence, our method could point to cheaper grouping schemes to better mitigate COVID-19 dissemination through identification and quarantine recommendation for positive individuals.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiología , Humanos , Tamizaje Masivo/métodos , Cuarentena , SARS-CoV-2 , Pruebas Serológicas/métodos
7.
BMC Genomics ; 22(1): 354, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001004

RESUMEN

BACKGROUND: Copy number variations (CNVs) are a major type of structural genomic variants that underlie genetic architecture and phenotypic variation of complex traits, not only in humans, but also in livestock animals. We identified CNVs along the chicken genome and analyzed their association with performance traits. Genome-wide CNVs were inferred from Affymetrix® high density SNP-chip data for a broiler population. CNVs were concatenated into segments and association analyses were performed with linear mixed models considering a genomic relationship matrix, for birth weight, body weight at 21, 35, 41 and 42 days, feed intake from 35 to 41 days, feed conversion ratio from 35 to 41 days and, body weight gain from 35 to 41 days of age. RESULTS: We identified 23,214 autosomal CNVs, merged into 5042 distinct CNV regions (CNVRs), covering 12.84% of the chicken autosomal genome. One significant CNV segment was associated with BWG on GGA3 (q-value = 0.00443); one significant CNV segment was associated with BW35 (q-value = 0.00571), BW41 (q-value = 0.00180) and BW42 (q-value = 0.00130) on GGA3, and one significant CNV segment was associated with BW on GGA5 (q-value = 0.00432). All significant CNV segments were verified by qPCR, and a validation rate of 92.59% was observed. These CNV segments are located nearby genes, such as KCNJ11, MyoD1 and SOX6, known to underlie growth and development. Moreover, gene-set analyses revealed terms linked with muscle physiology, cellular processes regulation and potassium channels. CONCLUSIONS: Overall, this CNV-based GWAS study unravels potential candidate genes that may regulate performance traits in chickens. Our findings provide a foundation for future functional studies on the role of specific genes in regulating performance in chickens.


Asunto(s)
Pollos , Variaciones en el Número de Copia de ADN , Animales , Pollos/genética , Genoma , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple
8.
Front Cell Dev Biol ; 8: 769, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32984310

RESUMEN

Scratch2 is a transcription factor expressed in a very restricted population of vertebrate embryonic neural cell precursors involved in their survival, differentiation, and migration. The mechanisms that control its expression remain unknown and could contribute towards our understanding of gene regulation during neural differentiation and evolution. Here we investigate the role of microRNAs (miRNAs) in the Scrt2 post-transcriptional regulatory mechanism. We identified binding sites for miR-125b and -200b in the Scrt2 3'UTR in silico. We confirmed the repressive-mediated activity of the Scrt2 3'UTR through electroporation of luciferase constructs into chick embryos. Further, both CRISPR/Cas9-mediated deletion of miR-125b/-200b responsive elements from chicken Scrt2 3'UTR and expression of miRNAs sponges increased Scrt2 expression field, suggesting a role for these miRNAs as post-transcriptional regulators of Scrt2. The biological effect of miR-125b titration was much more pronounced than that of miR-200b. Therefore, we propose that, after transcription, miR-125b fine-tunes the Scrt2 expression domain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA