Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 16768, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727983

RESUMEN

Mammalian host cell lines are the preferred expression systems for the manufacture of complex therapeutics and recombinant proteins. However, the most utilized mammalian host systems, namely Chinese hamster ovary (CHO), Sp2/0 and NS0 mouse myeloma cells, can produce glycoproteins with non-human glycans that may potentially illicit immunogenic responses. Hence, we developed a fully human expression system based on HEK293 cells for the stable and high titer production of recombinant proteins by first knocking out GLUL (encoding glutamine synthetase) using CRISPR-Cas9 system. Expression vectors using human GLUL as selection marker were then generated, with recombinant human erythropoietin (EPO) as our model protein. Selection was performed using methionine sulfoximine (MSX) to select for high EPO expression cells. EPO production of up to 92700 U/mL of EPO as analyzed by ELISA or 696 mg/L by densitometry was demonstrated in a 2 L stirred-tank fed batch bioreactor. Mass spectrometry analysis revealed that N-glycosylation of the produced EPO was similar to endogenous human proteins and non-human glycan epitopes were not detected. Collectively, our results highlight the use of a human cellular expression system for the high titer and xenogeneic-free production of EPO and possibly other complex recombinant proteins.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Eritropoyetina/genética , Eritropoyetina/metabolismo , Glutamato-Amoníaco Ligasa/genética , Ingeniería de Proteínas/métodos , Sistemas CRISPR-Cas , Expresión Génica , Técnicas de Inactivación de Genes , Vectores Genéticos/genética , Glicosilación , Células HEK293 , Humanos , Modelos Biológicos , Proteínas Recombinantes/metabolismo
2.
Crit Rev Biotechnol ; 38(6): 851-867, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29262720

RESUMEN

Protein glycosylation is post-translational modification (PTM) which is important for pharmacokinetics and immunogenicity of recombinant glycoprotein therapeutics. As a result of variations in monosaccharide composition, glycosidic linkages and glycan branching, glycosylation introduces considerable complexity and heterogeneity to therapeutics. The host cell line used to produce the glycoprotein has a strong influence on the glycosylation because different host systems may express varying repertoire of glycosylation enzymes and transporters that contributes to specificity and heterogeneity in glycosylation profiles. In this review, we discuss the types of host cell lines currently used for recombinant therapeutic production, their glycosylation potential and the resultant impact on glycoprotein properties. In addition, we compare the reported glycosylation profiles of four recombinant glycoproteins: immunoglobulin G (IgG), coagulation factor VII (FVII), erythropoietin (EPO) and alpha-1 antitrypsin (A1AT) produced in different mammalian cells to establish the influence of mammalian host cell lines on glycosylation.


Asunto(s)
Productos Biológicos/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Animales , Línea Celular , Glicosilación , Humanos , Proteínas Recombinantes/metabolismo
3.
Cell Cycle ; 9(15): 3100-5, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20699666

RESUMEN

During mitosis, the Golgi undergoes two sequential fragmentation steps to break from ribbon to individual stacks, then from stacks to vesicles. While the mechanism that regulates the first step has been studied, it remains obscure how the second vesiculation step is regulated. It has been suggested that Cdk1-dependent phosphorylation of the cis-Golgi matrix protein GM130 regulates the second step. Here we have tested if phorphorylation of GM130 by Cdk1 is required for Golgi vesiculation and mitotic progression. Inhibition of Cdk1 activity caused a failure of Golgi vesiculation and defects in chromosome congression/segregation. Expression of non-phosphorylatable mutant of GM130 (GM130S25A) in cells depleted of endogenous GM130 caused no apparent defects in Golgi vesiculation and mitotic progression. Similarly, no apparent defects in Golgi vesiculation and mitotic progression were observed when GM130S25A was expressed in GM130-deficient CHO cells. Our observations suggest that while Cdk1 based phosphorylation is essential for mitotic Golgi vesiculation, mammalian cells could possess redundant, S25 phosphorylation of GM130 independent pathways that ensure Golgi vesiculation and mitotic progression.


Asunto(s)
Autoantígenos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Mitosis , Fosfoserina/metabolismo , Sustitución de Aminoácidos/genética , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Fosforilación , Transporte de Proteínas , ARN Interferente Pequeño/metabolismo , Ratas , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...