Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 1021038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338478

RESUMEN

The lymphatic vasculature of the liver is vital for liver function as it maintains fluid and protein homeostasis and is important for immune cell transport to the lymph node. Chronic liver disease is associated with increased expression of inflammatory mediators including oxidized low-density lipoprotein (oxLDL). Intrahepatic levels of oxLDL are elevated in nonalcoholic fatty liver disease (NAFLD), chronic hepatitis C infection (HCV), alcohol-associated liver disease (ALD), and cholestatic liver diseases. To determine if liver lymphatic function is impaired in chronic liver diseases, in which increased oxLDL has been documented, we measured liver lymphatic function in murine models of NAFLD, ALD and primary sclerosing cholangitis (PSC). We found that Mdr2-/- (PSC), Lieber-DeCarli ethanol fed (ALD) and high fat and high cholesterol diet fed (NAFLD) mice all had a significant impairment in the ability to traffic FITC labeled dextran from the liver parenchyma to the liver draining lymph nodes. Utilizing an in vitro permeability assay, we found that oxLDL decreased the permeability of lymphatic endothelial cells (LEC)s, but not liver sinusoidal endothelial cells (LSEC)s. Here we demonstrate that LECs and LSECs differentially regulate SRC-family kinases, MAPK kinase and VE-Cadherin in response to oxLDL. Furthermore, Vascular Endothelial Growth Factor (VEGF)C or D (VEGFR-3 ligands) appear to regulate VE-Cadherin expression as well as decrease cellular permeability of LECs in vitro and in vivo after oxLDL treatment. These findings suggest that oxLDL acts to impede protein transport through the lymphatics through tightening of the cell-cell junctions. Importantly, engagement of VEGFR-3 by its ligands prevents VE-Cadherin upregulation and improves lymphatic permeability. These studies provide a potential therapeutic target to restore liver lymphatic function and improve liver function.

2.
Cell Mol Gastroenterol Hepatol ; 11(2): 573-595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32961356

RESUMEN

BACKGROUND AND AIMS: As the incidence of nonalcoholic steatohepatitis (NASH) continues to rise, understanding how normal liver functions are affected during disease is required before developing novel therapeutics which could reduce morbidity and mortality. However, very little is understood about how the transport of proteins and cells from the liver by the lymphatic vasculature is affected by inflammatory mediators or during disease. METHODS: To answer these questions, we utilized a well-validated mouse model of NASH and exposure to highly oxidized low density lipoprotein (oxLDL). In addition to single cell sequencing, multiplexed immunofluorescence and metabolomic analysis of liver lymphatic endothelial cells (LEC)s we evaluated lymphatic permeability and transport both in vitro and in vivo. RESULTS: Confirming similarities between human and mouse liver lymphatic vasculature in NASH, we found that the lymphatic vasculature expands as disease progresses and results in the downregulation of genes important to lymphatic identity and function. We also demonstrate, in mice with NASH, that fluorescein isothiocyanate (FITC) dextran does not accumulate in the liver draining lymph node upon intrahepatic injection, a defect that was rescued with therapeutic administration of the lymphatic growth factor, recombinant vascular endothelial growth factor C (rVEGFC). Similarly, exposure to oxLDL reduced the amount of FITC-dextran in the portal draining lymph node and through an LEC monolayer. We provide evidence that the mechanism by which oxLDL impacts lymphatic permeability is via a reduction in Prox1 expression which decreases lymphatic specific gene expression, impedes LEC metabolism and reorganizes the highly permeable lymphatic cell-cell junctions which are a defining feature of lymphatic capillaries. CONCLUSIONS: We identify oxLDL as a major contributor to decreased lymphatic permeability in the liver, a change which is consistent with decreased protein homeostasis and increased inflammation during chronic liver disease.


Asunto(s)
Lipoproteínas LDL/metabolismo , Hígado/patología , Vasos Linfáticos/patología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Proteínas de Homeodominio/metabolismo , Humanos , Uniones Intercelulares/patología , Hígado/inmunología , Vasos Linfáticos/citología , Vasos Linfáticos/inmunología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Permeabilidad , Proteostasis/genética , Proteostasis/inmunología , RNA-Seq , Análisis de la Célula Individual , Proteínas Supresoras de Tumor/metabolismo
3.
Front Physiol ; 10: 1579, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31992991

RESUMEN

Chronic liver disease (CLD) is a global health epidemic causing ∼2 million deaths annually worldwide. As the incidence of CLD is expected to rise over the next decade, understanding the cellular and molecular mediators of CLD is critical for developing novel therapeutics. Common characteristics of CLD include steatosis, inflammation, and cholesterol accumulation in the liver. While the lymphatic system in the liver has largely been overlooked, the liver lymphatics, as in other organs, are thought to play a critical role in maintaining normal hepatic function by assisting in the removal of protein, cholesterol, and immune infiltrate. Lymphatic growth, permeability, and/or hyperplasia in non-liver organs has been demonstrated to be caused by obesity or hypercholesterolemia in humans and animal models. While it is still unclear if changes in permeability occur in liver lymphatics, the lymphatics do expand in number and size in all disease etiologies tested. This is consistent with the lymphatic endothelial cells (LEC) upregulating proliferation specific genes, however, other transcriptional changes occur in liver LECs that are dependent on the inflammatory mediators that are specific to the disease etiology. Whether these changes induce lymphatic dysfunction or if they impact liver function has yet to be directly addressed. Here, we will review what is known about liver lymphatics in health and disease, what can be learned from recent work on the influence of obesity and hypercholesterolemia on the lymphatics in other organs, changes that occur in LECs in the liver during disease and outstanding questions in the field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA