Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
1.
ArXiv ; 2024 May 30.
Article En | MEDLINE | ID: mdl-38827454

Biological systems, particularly the brain, are frequently analyzed as networks, conveying mechanistic insights into their function and pathophysiology. This is the first study of a functional network of cardiac tissue. We use calcium imaging to obtain two functional networks in a subsidiary but essential pacemaker of the heart, the atrioventricular node (AVN). The AVN is a small cellular structure with dual functions: a) to delay the pacemaker signal passing from the sinoatrial node (SAN) to the ventricles, and b) to serve as a back-up pacemaker should the primary SAN pacemaker fail. Failure of the AVN can lead to syncope and death. We found that the shortest path lengths and clustering coefficients of the AVN are remarkably similar to those of the brain. The network is ``small-world," thus optimized for energy use vs transmission efficiency. We further study the network properties of AVN tissue with knock-out of the sodium-calcium exchange transporter. In this case, the average shortest path-lengths remained nearly unchanged showing network resilience, while the clustering coefficient was somewhat reduced, similar to schizophrenia in brain networks. When we removed the global action potential using principal component analysis (PCA) in wild-type model, the network lost its ``small-world" characteristics with less information-passing efficiency due to longer shortest path lengths but more robust signal propagation resulting from higher clustering. These two wild-type networks (with and without global action potential) may correspond to fast and slow conduction pathways. Laslty, a one-parameter non-linear preferential attachment model is a good fit to all three AVN networks.

2.
Nat Commun ; 15(1): 3831, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714663

The Na+-Ca2+ exchanger (NCX1) is the dominant Ca2+ extrusion mechanism in cardiac myocytes. NCX1 activity is inhibited by intracellular Na+ via a process known as Na+-dependent inactivation. A central question is whether this inactivation plays a physiological role in heart function. Using CRISPR/Cas9, we inserted the K229Q mutation in the gene (Slc8a1) encoding for NCX1. This mutation removes the Na+-dependent inactivation while preserving transport properties and other allosteric regulations. NCX1 mRNA levels, protein expression, and protein localization are unchanged in K229Q male mice. However, they exhibit reduced left ventricular ejection fraction and fractional shortening, while displaying a prolonged QT interval. K229Q ventricular myocytes show enhanced NCX1 activity, resulting in action potential prolongation, higher incidence of aberrant action potentials, a faster decline of Ca2+ transients, and depressed cell shortening. The results demonstrate that NCX1 Na+-dependent inactivation plays an essential role in heart function by affecting both cardiac excitability and contractility.


Action Potentials , Calcium , Myocytes, Cardiac , Sodium-Calcium Exchanger , Sodium , Sodium-Calcium Exchanger/metabolism , Sodium-Calcium Exchanger/genetics , Animals , Myocytes, Cardiac/metabolism , Male , Sodium/metabolism , Mice , Calcium/metabolism , Myocardial Contraction/physiology , Myocardial Contraction/genetics , Heart/physiology , Humans , Mutation , CRISPR-Cas Systems
4.
Int J Cardiol Heart Vasc ; 44: 101168, 2023 Feb.
Article En | MEDLINE | ID: mdl-36620202

Aims: Na+/Ca2+ exchanger (NCX) upregulation in cardiac diseases like heart failure promotes as an independent proarrhythmic factor early and delayed afterdepolarizations (EADs/DADs) on the single cell level. Consequently, NCX inhibition protects against EADs and DADs in isolated cardiomyocytes. We here investigate, whether these promising cellular in vitro findings likewise apply to an in vivo setup. Methods/Results: Programmed ventricular stimulation (PVS) and isoproterenol were applied to a murine heterozygous NCX-knockout model (KO) to investigate ventricular arrhythmia initiation and perpetuation compared to wild-type (WT). KO displayed a reduced susceptibility towards isoproterenol-induced premature ventricular complexes. During PVS, initiation of single or double ectopic beats was similar between KO and WT. But strikingly, perpetuation of ventricular tachycardia (VT) was significantly increased in KO (animals with VT - KO: 82 %; WT: 47 %; p = 0.0122 / median number of VTs - KO: 4.5 (1.0, 6.25); WT: 0.0 (0.0, 4.0); p = 0.0039). The median VT duration was prolonged in KO (in s; KO: 0.38 (0.19, 0.96); WT: 0.0 (0.0, 0.60); p = 0.0239). The ventricular refractory period (VRP) was shortened in KO (in ms; KO: 15.1 ± 0.7; WT: 18.7 ± 0.7; p = 0.0013). Conclusions: Not the initiation, but the perpetuation of provoked whole-heart in vivo ventricular arrhythmia was increased in KO. As a potential mechanism, we found a significantly reduced VRP, which may promote perpetuation of reentrant ventricular arrhythmia. On a translational perspective, the antiarrhythmic concept of therapeutic NCX inhibition seems to be ambivalent by protecting from initiating afterdepolarizations but favoring arrhythmia perpetuation in vivo at least in a murine model.

5.
Heart Rhythm ; 19(12): 2086-2094, 2022 12.
Article En | MEDLINE | ID: mdl-35995322

BACKGROUND: The role of sympathetic nerve activity to maintain sinus rate acceleration remains unclear. OBJECTIVE: The purpose of this study was to test the hypothesis that sustained (>30 seconds) sinus rate acceleration can be associated with either a sympathetic driven or a sympathetic toggled mechanism. METHODS: We used a patch monitor to record skin sympathetic nerve activity (SKNA) and electrocardiogram over 24 hours. Study 1 included chronic orthostatic intolerance (OI) (n = 18), atrial fibrillation (n = 7), and asymptomatic normal control (n = 19) groups. Study 2 included 17 participants with chronic OI not treated with ivabradine, pyridostigmine, or ß-blockers. RESULTS: While a majority of sinus rate acceleration was driven by persistent SKNA in study 1, some episodes were toggled on and off by SKNA bursts without persistent SKNA elevation. The sympathetic toggled sinus rate acceleration episodes were found in 7 of 18 participants with chronic OI (39%), 2 of 7 participants with atrial fibrillation (29%), and 6 of 19 normal control participants (32%) (P = .847) and were faster and longer in the chronic OI group than in other groups. In study 2, there were a total of 11 episodes of sinus rate acceleration that persisted for >200 seconds. Among these episodes, 6 (35%) were toggled on and off by SKNA bursts. CONCLUSION: Sustained sinus rate acceleration (may be toggled on or off) is associated with SKNA bursts in participants with chronic OI, participants with atrial fibrillation, and normal controls. Patients with OI had more frequent and longer episodes than did other groups.


Atrial Fibrillation , Orthostatic Intolerance , Humans , Orthostatic Intolerance/diagnosis , Orthostatic Intolerance/complications , Tachycardia, Sinus/etiology , Tachycardia, Sinus/complications , Heart Rate/physiology , Syndrome , Acceleration
6.
Ann Noninvasive Electrocardiol ; 27(3): e12940, 2022 05.
Article En | MEDLINE | ID: mdl-35176188

Delayed intrinsicoid deflection (DID) is an emerging electrocardiogram (ECG) marker of major clinical significance that is increasingly getting attention. Intrinsicoid deflection measures ventricular depolarization in the initial portion of the QRS complex, and DID is defined as an R wave peak time of ≥50 ms in leads V5 and V6 . Prior studies have identified an independent association between DID and cardiovascular conditions such as left ventricular hypertrophy, heart failure, and sudden cardiac death. The exact mechanism that results in DID remains unknown. Animal models indicate that DID may result from abnormal calcium and potassium conductance as well as extracellular matrix remodeling. DID remains an ECG marker of interest given its potential predictive value of underlying cardiovascular pathology and adverse events. This review provides an update on the proposed mechanisms and associations, as well as the clinical and research implications of DID.


Heart Diseases , Heart Failure , Death, Sudden, Cardiac , Electrocardiography , Humans , Hypertrophy, Left Ventricular
7.
Circulation ; 145(1): 45-60, 2022 01 04.
Article En | MEDLINE | ID: mdl-34905696

BACKGROUND: The ability to increase heart rate during exercise and other stressors is a key homeostatic feature of the sinoatrial node (SAN). When the physiological heart rate response is blunted, chronotropic incompetence limits exercise capacity, a common problem in patients with heart failure with preserved ejection fraction (HFpEF). Despite its clinical relevance, the mechanisms of chronotropic incompetence remain unknown. METHODS: Dahl salt-sensitive rats fed a high-salt diet and C57Bl6 mice fed a high-fat diet and an inhibitor of constitutive nitric oxide synthase (Nω-nitro-L-arginine methyl ester [L-NAME]; 2-hit) were used as models of HFpEF. Myocardial infarction was created to induce HF with reduced ejection fraction. Rats and mice fed with a normal diet or those that had a sham surgery served as respective controls. A comprehensive characterization of SAN function and chronotropic response was conducted by in vivo, ex vivo, and single-cell electrophysiologic studies. RNA sequencing of SAN was performed to identify transcriptomic changes. Computational modeling of biophysically-detailed human HFpEF SAN was created. RESULTS: Rats with phenotypically-verified HFpEF exhibited limited chronotropic response associated with intrinsic SAN dysfunction, including impaired ß-adrenergic responsiveness and an alternating leading pacemaker within the SAN. Prolonged SAN recovery time and reduced SAN sensitivity to isoproterenol were confirmed in the 2-hit mouse model. Adenosine challenge unmasked conduction blocks within the SAN, which were associated with structural remodeling. Chronotropic incompetence and SAN dysfunction were also found in rats with HF with reduced ejection fraction. Single-cell studies and transcriptomic profiling revealed HFpEF-related alterations in both the "membrane clock" (ion channels) and the "Ca2+ clock" (spontaneous Ca2+ release events). The physiologic impairments were reproduced in silico by empirically-constrained quantitative modeling of human SAN function. CONCLUSIONS: Chronotropic incompetence and SAN dysfunction were seen in both models of HF. We identified that intrinsic abnormalities of SAN structure and function underlie the chronotropic response in HFpEF.


Heart Failure/physiopathology , Sinoatrial Node/abnormalities , Stroke Volume/physiology , Animals , Humans , Rats
8.
Compr Physiol ; 12(1): 2681-2717, 2021 12 29.
Article En | MEDLINE | ID: mdl-34964124

Ca2+ homeostasis is essential for cell function and survival. As such, the cytosolic Ca2+ concentration is tightly controlled by a wide number of specialized Ca2+ handling proteins. One among them is the Na+ -Ca2+ exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na+ to drive Ca2+ out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca2+ homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.


Calcium , Sodium-Calcium Exchanger , Animals , Calcium/metabolism , Cell Membrane/metabolism , Heart , Homeostasis , Humans , Mammals/metabolism , Membrane Transport Proteins , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism
9.
Circ Arrhythm Electrophysiol ; 14(11): e010181, 2021 11.
Article En | MEDLINE | ID: mdl-34719240

Sudden cardiac death (SCD), the unexpected death due to acquired or genetic cardiovascular disease, follows distinct 24-hour patterns in occurrence. These 24-hour patterns likely reflect daily changes in arrhythmogenic triggers and the myocardial substrate caused by day/night rhythms in behavior, the environment, and endogenous circadian mechanisms. To better address fundamental questions regarding the circadian mechanisms, the National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death. We present a 2-part report of findings from this workshop. Part 1 summarizes the workshop and serves to identify research gaps and opportunities in the areas of basic and translational research. Among the gaps was the lack of standardization in animal studies for reporting environmental conditions (eg, timing of experiments relative to the light dark cycle or animal housing temperatures) that can impair rigor and reproducibility. Workshop participants also pointed to uncertainty regarding the importance of maintaining normal circadian rhythmic synchrony and the potential pathological impact of desynchrony on SCD risk. One related question raised was whether circadian mechanisms can be targeted to reduce SCD risk. Finally, the experts underscored the need for studies aimed at determining the physiological importance of circadian clocks in the many different cell types important to normal heart function and SCD. Addressing these gaps could lead to new therapeutic approaches/molecular targets that can mitigate the risk of SCD not only at certain times but over the entire 24-hour period.


Circadian Rhythm/physiology , Death, Sudden, Cardiac/etiology , National Heart, Lung, and Blood Institute (U.S.) , Animals , Humans , United States
10.
Circ Arrhythm Electrophysiol ; 14(11): e010190, 2021 11.
Article En | MEDLINE | ID: mdl-34719257

Sudden cardiac death (SCD) is the sudden, unexpected death due to abrupt loss of heart function secondary to cardiovascular disease. In certain populations living with cardiovascular disease, SCD follows a distinct 24-hour pattern in occurrence, suggesting day/night rhythms in behavior, the environment, and endogenous circadian rhythms result in daily spans of increased vulnerability. The National Heart, Lung, and Blood Institute convened a workshop, Understanding Circadian Mechanisms of Sudden Cardiac Death to identify fundamental questions regarding the role of the circadian rhythms in SCD. Part 2 summarizes research gaps and opportunities in the areas of population and clinical research identified in the workshop. Established research supports a complex interaction between circadian rhythms and physiological responses that increase the risk for SCD. Moreover, these physiological responses themselves are influenced by several biological variables, including the type of cardiovascular disease, sex, age, and genetics, as well as environmental factors. The emergence of new noninvasive biotechnological tools that continuously measure key cardiovascular variables, as well as the identification of biomarkers to assess circadian rhythms, hold promise for generating large-scale human data sets that will delineate which subsets of individuals are most vulnerable to SCD. Additionally, these data will improve our understanding of how people who suffer from circadian disruptions develop cardiovascular diseases that increase the risk for SCD. Emerging strategies to identify new biomarkers that can quantify circadian health (eg, environmental, behavioral, and internal misalignment) may lead to new interventions and therapeutic targets to prevent the progression of cardiovascular diseases that cause SCD.


Circadian Rhythm/physiology , Death, Sudden, Cardiac/prevention & control , Population Surveillance , Death, Sudden, Cardiac/epidemiology , Humans , National Heart, Lung, and Blood Institute (U.S.) , United States/epidemiology
11.
Circ Res ; 129(12): 1125-1140, 2021 12 03.
Article En | MEDLINE | ID: mdl-34641704

RATIONALE: Phosphorylation of sarcomeric proteins has been implicated in heart failure with preserved ejection fraction (HFpEF); such changes may contribute to diastolic dysfunction by altering contractility, cardiac stiffness, Ca2+-sensitivity, and mechanosensing. Treatment with cardiosphere-derived cells (CDCs) restores normal diastolic function, attenuates fibrosis and inflammation, and improves survival in a rat HFpEF model. OBJECTIVE: Phosphorylation changes that underlie HFpEF and those reversed by CDC therapy, with a focus on the sarcomeric subproteome were analyzed. METHODS AND RESULTS: Dahl salt-sensitive rats fed a high-salt diet, with echocardiographically verified diastolic dysfunction, were randomly assigned to either intracoronary CDCs or placebo. Dahl salt-sensitive rats receiving low salt diet served as controls. Protein and phosphorylated Ser, Thr, and Tyr residues from left ventricular tissue were quantified by mass spectrometry. HFpEF hearts exhibited extensive hyperphosphorylation with 98% of the 529 significantly changed phospho-sites increased compared with control. Of those, 39% were located within the sarcomeric subproteome, with a large group of proteins located or associated with the Z-disk. CDC treatment partially reverted the hyperphosphorylation, with 85% of the significantly altered 76 residues hypophosphorylated. Bioinformatic upstream analysis of the differentially phosphorylated protein residues revealed PKC as the dominant putative regulatory kinase. PKC isoform analysis indicated increases in PKC α, ß, and δ concentration, whereas CDC treatment led to a reversion of PKCß. Use of PKC isoform specific inhibition and overexpression of various PKC isoforms strongly suggests that PKCß is the dominant kinase involved in hyperphosphorylation in HFpEF and is altered with CDC treatment. CONCLUSIONS: Increased protein phosphorylation at the Z-disk is associated with diastolic dysfunction, with PKC isoforms driving most quantified phosphorylation changes. Because CDCs reverse the key abnormalities in HFpEF and selectively reverse PKCß upregulation, PKCß merits being classified as a potential therapeutic target in HFpEF, a disease notoriously refractory to medical intervention.


Heart Failure/metabolism , Myofibrils/metabolism , Protein Kinase C/metabolism , Stem Cell Transplantation/methods , Animals , Cell Line , Diastole , Heart Failure/physiopathology , Heart Failure/therapy , Male , Phosphorylation , Rats , Rats, Inbred Dahl
12.
J Am Heart Assoc ; 10(17): e019273, 2021 09 07.
Article En | MEDLINE | ID: mdl-34472363

Background Sodium-calcium (Ca2+) exchanger isoform 1 (NCX1) is the dominant Ca2+ efflux mechanism in cardiomyocytes and is critical to maintaining Ca2+ homeostasis during excitation-contraction coupling. NCX1 activity has been implicated in the pathogenesis of cardiovascular diseases, but a lack of specific NCX1 blockers complicates experimental interpretation. Our aim was to develop a tamoxifen-inducible NCX1 knockout (KO) mouse to investigate compensatory adaptations of acute ablation of NCX1 on excitation-contraction coupling and intracellular Ca2+ regulation, and to examine whether acute KO of NCX1 confers resistance to triggered arrhythmia and ischemia/reperfusion injury. Methods and Results We used the α-myosin heavy chain promoter (Myh6)-MerCreMer promoter to create a tamoxifen-inducible cardiac-specific NCX1 KO mouse. Within 1 week of tamoxifen injection, NCX1 protein expression and current were dramatically reduced. Diastolic Ca2+ increased despite adaptive reductions in Ca2+ current and action potential duration and compensatory increases in excitation-contraction coupling gain, sarcoplasmic reticulum Ca2+ ATPase 2 and plasma membrane Ca2+ ATPase. As these adaptations progressed over 4 weeks, diastolic Ca2+ normalized and SR Ca2+ load increased. Left ventricular function remained normal, but mild fibrosis and hypertrophy developed. Transcriptomics revealed modification of cardiovascular-related gene networks including cell growth and fibrosis. NCX1 KO reduced spontaneous action potentials triggered by delayed afterdepolarizations and reduced scar size in response to ischemia/reperfusion. Conclusions Tamoxifen-inducible NCX1 KO mice adapt to acute genetic ablation of NCX1 by reducing Ca2+ influx, increasing alternative Ca2+ efflux pathways, and increasing excitation-contraction coupling gain to maintain contractility at the cost of mild Ca2+-activated hypertrophy and fibrosis and decreased survival. Nevertheless, KO myocytes are protected against spontaneous action potentials and ischemia/reperfusion injury.


Arrhythmias, Cardiac , Calcium , Myocytes, Cardiac , Reperfusion Injury , Sodium-Calcium Exchanger , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/prevention & control , Calcium/metabolism , Fibrosis , Hypertrophy , Mice , Mice, Knockout , Myocardial Contraction , Myocytes, Cardiac/metabolism , Sodium-Calcium Exchanger/genetics , Tamoxifen/pharmacology
13.
J Physiol ; 598(22): 5091-5108, 2020 11.
Article En | MEDLINE | ID: mdl-32829489

KEY POINTS: Heart failure (HF), the leading cause of death in developed countries, occurs in the setting of reduced (HFrEF) or preserved (HFpEF) ejection fraction. Unlike HFrEF, there are no effective treatments for HFpEF, which accounts for ∼50% of heart failure. Abnormal intracellular calcium dynamics in cardiomyocytes have major implications for contractility and rhythm, but compared to HFrEF, very little is known about calcium cycling in HFpEF. We used rat models of HFpEF and HFrEF to reveal distinct differences in intracellular calcium regulation and excitation-contraction (EC) coupling. While HFrEF is characterized by defective EC coupling at baseline, HFpEF exhibits enhanced coupling fidelity, further aggravated by a reduction in ß-adrenergic sensitivity. These differences in EC coupling and ß-adrenergic sensitivity may help explain why therapies that work in HFrEF are ineffective in HFpEF. ABSTRACT: Heart failure with reduced or preserved ejection fraction (respectively, HFrEF and HFpEF) is the leading cause of death in developed countries. Although numerous therapies improve outcomes in HFrEF, there are no effective treatments for HFpEF. We studied phenotypically verified rat models of HFrEF and HFpEF to compare excitation-contraction (EC) coupling and protein expression in these two forms of heart failure. Dahl salt-sensitive rats were fed a high-salt diet (8% NaCl) from 7 weeks of age to induce HFpEF. Impaired diastolic relaxation and preserved ejection fraction were confirmed in each animal echocardiographically, and clinical signs of heart failure were documented. To generate HFrEF, Sprague-Dawley (SD) rats underwent permanent left anterior descending coronary artery ligation which, 8-10 weeks later, led to systolic dysfunction (verified echocardiographically) and clinical signs of heart failure. Calcium (Ca2+ ) transients were measured in isolated cardiomyocytes under field stimulation or patch clamp. Ultra-high-speed laser scanning confocal imaging captured Ca2+ sparks evoked by voltage steps. Western blotting and PCR were used to assay changes in EC coupling protein and RNA expression. Cardiomyocytes from rats with HFrEF exhibited impaired EC coupling, including decreased Ca2+ transient (CaT) amplitude and defective couplon recruitment, associated with transverse (t)-tubule disruption. In stark contrast, HFpEF cardiomyocytes showed saturated EC coupling (increased ICa , high probability of couplon recruitment with greater Ca2+ release synchrony, increased CaT) and preserved t-tubule integrity. ß-Adrenergic stimulation of HFpEF myocytes with isoprenaline (isoproterenol) failed to elicit robust increases in ICa or CaT and relaxation kinetics. Fundamental differences in EC coupling distinguish HFrEF from HFpEF.


Heart Failure , Adrenergic Agents , Animals , Calcium , Prognosis , Rats , Rats, Inbred Dahl , Rats, Sprague-Dawley , Stroke Volume
14.
Cell Calcium ; 87: 102140, 2020 05.
Article En | MEDLINE | ID: mdl-32070924

A precise temporal and spatial control of intracellular Ca2+ concentration is essential for a coordinated contraction of the heart. Following contraction, cardiac cells need to rapidly remove intracellular Ca2+ to allow for relaxation. This task is performed by two transporters: the plasma membrane Na+-Ca2+ exchanger (NCX) and the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA). NCX extrudes Ca2+ from the cell, balancing the Ca2+entering the cytoplasm during systole through L-type Ca2+ channels. In parallel, following SR Ca2+ release, SERCA activity replenishes the SR, reuptaking Ca2+ from the cytoplasm. The activity of the mammalian exchanger is fine-tuned by numerous ionic allosteric regulatory mechanisms. Micromolar concentrations of cytoplasmic Ca2+ potentiate NCX activity, while an increase in intracellular Na+ levels inhibits NCX via a mechanism known as Na+-dependent inactivation. Protons are also powerful inhibitors of NCX activity. By regulating NCX activity, Ca2+, Na+ and H+ couple cell metabolism to Ca2+ homeostasis and therefore cardiac contractility. This review summarizes the recent progress towards the understanding of the molecular mechanisms underlying the ionic regulation of the cardiac NCX with special emphasis on pH modulation and its physiological impact on the heart.


Cytoplasm/metabolism , Myocardium/metabolism , Protons , Sodium-Calcium Exchanger/metabolism , Allosteric Regulation , Animals , Humans , Hydrogen-Ion Concentration , Sodium-Calcium Exchanger/chemistry
15.
Cell Calcium ; 87: 102167, 2020 05.
Article En | MEDLINE | ID: mdl-32028091

Na/Ca exchange is the dominant calcium (Ca) efflux mechanism in cardiac myocytes. Although our knowledge of exchanger function (NCX1 in the heart) was originally established using biochemical and electrophysiological tools such as cardiac sarcolemmal vesicles and the giant patch technique [1-4], many advances in our understanding of the physiological/pathophysiological roles of NCX1 in the heart have been obtained using a suite of genetically modified mice. Early mouse studies focused on modification of expression levels of NCX1 in the ventricles, with transgenic overexpressors, global NCX1 knockout (KO) mice (which were embryonic lethal if homozygous), and finally ventricular-specific NCX1 KO [5-12]. We found, to our surprise, that ventricular cardiomyocytes lacking NCX1 can survive and function by engaging a clever set of adaptations to minimize Ca entry, while maintaining contractile function through an increase in excitation-contraction (EC) coupling gain [5,6,13]. Having studied ventricular NCX1 ablation in detail, we more recently focused on elucidating the role of NCX1 in the atria through altering NCX1 expression. Using a novel atrial-specific NCX1 KO mouse, we found unexpected changes in atrial cell morphology and calcium handling, together with dramatic alterations in the function of sinoatrial node (SAN) pacemaker activity. In this review, we will discuss these findings and their implications for cardiac disease.


Biological Clocks , Calcium/metabolism , Excitation Contraction Coupling , Heart Atria/metabolism , Sinoatrial Node/metabolism , Sodium-Calcium Exchanger/metabolism , Sodium/metabolism , Animals , Humans
16.
JCI Insight ; 5(3)2020 02 13.
Article En | MEDLINE | ID: mdl-31846438

Chronic sympathoexcitation is implicated in ventricular arrhythmogenesis (VAs) following myocardial infarction (MI), but the critical neural pathways involved are not well understood. Cardiac adrenergic function is partly regulated by sympathetic afferent reflexes, transduced by spinal afferent fibers expressing the transient receptor potential cation subfamily V member 1 (TRPV1) channel. The role of chronic TRPV1 afferent signaling in VAs is not known. We hypothesized that persistent TRPV1 afferent neurotransmission promotes VAs after MI. Using epicardial resiniferatoxin (RTX) to deplete cardiac TRPV1-expressing fibers, we dissected the role of this neural circuit in VAs after chronic MI in a porcine model. We examined the underlying mechanisms using molecular approaches, IHC, in vitro and in vivo cardiac electrophysiology, and simultaneous cardioneural mapping. Epicardial RTX depleted cardiac TRPV1 afferent fibers and abolished functional responses to TRPV1 agonists. Ventricular tachycardia/fibrillation (VT/VF) was readily inducible in MI subjects by programmed electrical stimulation or cesium chloride administration; however, TRPV1 afferent depletion prevented VT/VF induced by either method. Mechanistically, TRPV1 afferent depletion did not alter cardiomyocyte action potentials and calcium transients, the expression of ion channels, or calcium handling proteins. However, it attenuated fibrosis and mitigated electrical instability in the scar border zone. In vivo recordings of cardiovascular-related stellate ganglion neurons (SGNs) revealed that MI enhances SGN function and disrupts integrated neural processing. Depleting TRPV1 afferents normalized these processes. Taken together, these data indicate that, after MI, TRPV1 afferent-induced adrenergic dysfunction promotes fibrosis and adverse cardiac remodeling, and it worsens border zone electrical heterogeneity, resulting in electrically unstable ventricular myocardium. We propose targeting TRPV1-expressing afferent to reduce VT/VF following MI.


Afferent Pathways , Myocardial Infarction/physiopathology , Myocardium/metabolism , Signal Transduction , TRPV Cation Channels/metabolism , Ventricular Remodeling , Afferent Pathways/drug effects , Animals , Disease Models, Animal , Diterpenes/administration & dosage , Heart/physiopathology , Humans , Myocardial Infarction/metabolism , Neurotoxins/administration & dosage , Swine
17.
Stem Cells ; 38(3): 352-368, 2020 03.
Article En | MEDLINE | ID: mdl-31648393

Cardiac differentiation of embryonic stem cells (ESCs) can give rise to de novo chamber cardiomyocytes and nodal pacemaker cells. Compared with our understanding of direct differentiation toward atrial and ventricular myocytes, the mechanisms for nodal pacemaker cell commitment are not well understood. Taking a cue from the prominence of canonical Wnt signaling during cardiac pacemaker tissue development in chick embryos, we asked if modulations of Wnt signaling influence cardiac progenitors to bifurcate to either chamber cardiomyocytes or pacemaker cells. Omitting an exogenous Wnt inhibitor, which is routinely added to maximize cardiac myocyte yield during differentiation of mouse and human ESCs, led to increased yield of spontaneously beating cardiomyocytes with action potential properties similar to those of native sinoatrial node pacemaker cells. The pacemaker phenotype was accompanied by enhanced expression of genes and gene products that mark nodal pacemaker cells such as Hcn4, Tbx18, Tbx3, and Shox2. Addition of exogenous Wnt3a ligand, which activates canonical Wnt/ß-catenin signaling, increased the yield of pacemaker-like myocytes while reducing cTNT-positive pan-cardiac differentiation. Conversely, addition of inhibitors of Wnt/ß-catenin signaling led to increased chamber myocyte lineage development at the expense of pacemaker cell specification. The positive impact of canonical Wnt signaling on nodal pacemaker cell differentiation was evidenced in direct differentiation of two human ESC lines and human induced pluripotent stem cells. Our data identify the Wnt/ß-catenin pathway as a critical determinant of cardiac myocyte subtype commitment during ESC differentiation: endogenous Wnt signaling favors the pacemaker lineage, whereas its suppression promotes the chamber cardiomyocyte lineage.


Human Embryonic Stem Cells/metabolism , Mesoderm/metabolism , Mouse Embryonic Stem Cells/metabolism , Wnt Signaling Pathway/genetics , Animals , Cell Differentiation , Humans , Mice
18.
JCI Insight ; 3(19)2018 10 04.
Article En | MEDLINE | ID: mdl-30282820

Sudden death is the most common mode of exodus in patients with heart failure and preserved ejection fraction (HFpEF). Cardiosphere-derived cells (CDCs) reduce inflammation and fibrosis in a rat model of HFpEF, improving diastolic function and prolonging survival. We tested the hypothesis that CDCs decrease ventricular arrhythmias (VAs) and thereby possibly contribute to prolonged survival. Dahl salt-sensitive rats were fed a high-salt diet to induce HFpEF. Allogeneic rat CDCs (or phosphate-buffered saline as placebo) were injected in rats with echo-verified HFpEF. CDC-injected HFpEF rats were less prone to VA induction by programmed electrical stimulation. Action potential duration (APD) was shortened, and APD homogeneity was increased by CDC injection. Transient outward potassium current density was upregulated in cardiomyocytes from CDC rats relative to placebo, as were the underlying transcript (Kcnd3) and protein (Kv4.3) levels. Fibrosis was attenuated in CDC-treated hearts, and survival was increased. Sudden death risk also trended down, albeit nonsignificantly. CDC therapy decreased VA in HFpEF rats by shortening APD, improving APD homogeneity, and decreasing fibrosis. Unlike other stem/progenitor cells, which often exacerbate arrhythmias, CDCs reverse electrical remodeling and suppress arrhythmogenesis in HFpEF.


Action Potentials , Arrhythmias, Cardiac/prevention & control , Death, Sudden, Cardiac/prevention & control , Heart Failure/mortality , Myoblasts, Cardiac/transplantation , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/mortality , Death, Sudden, Cardiac/etiology , Disease Models, Animal , Echocardiography , Electrocardiography , Heart Failure/etiology , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Humans , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Rats, Inbred Dahl , Shal Potassium Channels/metabolism , Sodium, Dietary/adverse effects , Stroke Volume , Transplantation, Homologous , Ventricular Remodeling
19.
Front Pharmacol ; 9: 933, 2018.
Article En | MEDLINE | ID: mdl-30186171

Background: Principal mechanisms of arrhythmia have been derived from ventricular but not atrial cardiomyocytes of animal models despite higher prevalence of atrial arrhythmia (e.g., atrial fibrillation). Due to significant ultrastructural and functional differences, a simple transfer of ventricular proneness toward arrhythmia to atrial arrhythmia is critical. The use of murine models in arrhythmia research is widespread, despite known translational limitations. We here directly compare atrial and ventricular mechanisms of arrhythmia to identify critical differences that should be considered in murine models for development of antiarrhythmic strategies for atrial arrhythmia. Methods and Results: Isolated murine atrial and ventricular myocytes were analyzed by wide field microscopy and subjected to a proarrhythmic protocol during patch-clamp experiments. As expected, the spindle shaped atrial myocytes showed decreased cell area and membrane capacitance compared to the rectangular shaped ventricular myocytes. Though delayed afterdepolarizations (DADs) could be evoked in a similar fraction of both cell types (80% of cells each), these led significantly more often to the occurrence of spontaneous action potentials (sAPs) in ventricular myocytes. Interestingly, numerous early afterdepolarizations (EADs) were observed in the majority of ventricular myocytes, but there was no EAD in any atrial myocyte (EADs per cell; atrial myocytes: 0 ± 0; n = 25/12 animals; ventricular myocytes: 1.5 [0-43]; n = 20/12 animals; p < 0.05). At the same time, the action potential duration to 90% decay (APD90) was unaltered and the APD50 even increased in atrial versus ventricular myocytes. However, the depolarizing L-type Ca2+ current (ICa) and Na+/Ca2+-exchanger inward current (INCX) were significantly smaller in atrial versus ventricular myocytes. Conclusion: In mice, atrial myocytes exhibit a substantially distinct occurrence of proarrhythmic afterdepolarizations compared to ventricular myocytes, since they are in a similar manner susceptible to DADs but interestingly seem to be protected against EADs and show less sAPs. Key factors in the generation of EADs like ICa and INCX were significantly reduced in atrial versus ventricular myocytes, which may offer a mechanistic explanation for the observed protection against EADs. These findings may be of relevance for current studies on atrial level in murine models to develop targeted strategies for the treatment of atrial arrhythmia.

20.
Circ Arrhythm Electrophysiol ; 11(8): e006452, 2018 08.
Article En | MEDLINE | ID: mdl-30030266

BACKGROUND: Heart failure (HF) with preserved ejection fraction (HFpEF) is increasingly common clinically, now rivaling or exceeding HF with reduced ejection fraction . Sudden death is the leading mode of exodus in patients with HFpEF, but the underlying causes are largely unknown. Using ambulatory recordings in a rat model, we test the hypothesis that ventricular arrhythmias (VA) underlie sudden death in HFpEF. METHODS: Dahl salt-sensitive rats (7 weeks of age) were fed a high-salt diet to induce HFpEF (n=13) or a normal-salt diet (controls, n=9). Transthoracic echocardiography was performed to check systolic and diastolic function at 14 to 18 weeks of age. Telemetric electrocardiographic recordings were analyzed for QT interval duration, burden of premature ventricular contractions, spontaneous VA, and heart rate variability. Survival was monitored twice daily. RESULTS: High-salt-fed rats with clear diastolic dysfunction, preserved ejection fraction, and HF signs were diagnosed with HFpEF at 14 to 15 weeks of age. QT and QTc intervals were prolonged in HFpEF rats compared with controls. Heart rate variability was reduced in HFpEF rats compared with controls. Spontaneous VA were more prevalent in HFpEF rats (6/13=46.1% versus 0/9=0% in controls; P<0.05), and sudden death was observed in 4 of 13 HFpEF rats. Three of the 4 sudden deaths were associated with VA as the terminal rhythm. CONCLUSIONS: In this rat model with phenotypically verified HFpEF, sudden death was common and generally associated with VA. Further clinical studies are warranted to determine whether these insights translate to sudden death in HFpEF patients.


Death, Sudden, Cardiac/etiology , Heart Failure/etiology , Heart Rate , Sodium Chloride, Dietary , Tachycardia, Ventricular/etiology , Ventricular Premature Complexes/etiology , Animals , Disease Models, Animal , Disease Progression , Heart Failure/physiopathology , Male , Rats, Inbred Dahl , Stroke Volume , Tachycardia, Ventricular/physiopathology , Time Factors , Ventricular Function, Left , Ventricular Premature Complexes/physiopathology
...