Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 13(8)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37317982

RESUMEN

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genomic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families-genes directly mediating interactions with plant chemical defenses-underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many insect lineages are ancient (>150 million years ago (mya)), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several nonherbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza has among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant-binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on living plants (bitter or electrophilic phytotoxins) or their ancestral diet (fermenting plant volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight gene candidates that have also been linked to other dietary transitions in Drosophila.


Asunto(s)
Proteínas de Drosophila , Herbivoria , Animales , Herbivoria/genética , Drosophila/genética , Drosophila/metabolismo , Insectos , Proteínas de Drosophila/genética , Genómica/métodos , Filogenia , Evolución Molecular
2.
bioRxiv ; 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36993186

RESUMEN

Herbivorous insects are exceptionally diverse, accounting for a quarter of all known eukaryotic species, but the genetic basis of adaptations that enabled this dietary transition remains poorly understood. Many studies have suggested that expansions and contractions of chemosensory and detoxification gene families - genes directly mediating interactions with plant chemical defenses - underlie successful plant colonization. However, this hypothesis has been challenging to test because the origins of herbivory in many lineages are ancient (>150 million years ago [mya]), obscuring genomic evolutionary patterns. Here, we characterized chemosensory and detoxification gene family evolution across Scaptomyza, a genus nested within Drosophila that includes a recently derived (<15 mya) herbivore lineage of mustard (Brassicales) specialists and carnation (Caryophyllaceae) specialists, and several non-herbivorous species. Comparative genomic analyses revealed that herbivorous Scaptomyza have among the smallest chemosensory and detoxification gene repertoires across 12 drosophilid species surveyed. Rates of gene turnover averaged across the herbivore clade were significantly higher than background rates in over half of the surveyed gene families. However, gene turnover was more limited along the ancestral herbivore branch, with only gustatory receptors and odorant binding proteins experiencing strong losses. The genes most significantly impacted by gene loss, duplication, or changes in selective constraint were those involved in detecting compounds associated with feeding on plants (bitter or electrophilic phytotoxins) or their ancestral diet (yeast and fruit volatiles). These results provide insight into the molecular and evolutionary mechanisms of plant-feeding adaptations and highlight strong gene candidates that have also been linked to other dietary transitions in Drosophila .

3.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34963012

RESUMEN

The diversity of herbivorous insects is attributed to their propensity to specialize on toxic plants. In an evolutionary twist, toxins betray the identity of their bearers when herbivores coopt them as cues for host-plant finding, but the evolutionary mechanisms underlying this phenomenon are poorly understood. We focused on Scaptomyza flava, an herbivorous drosophilid specialized on isothiocyanate (ITC)-producing (Brassicales) plants, and identified Or67b paralogs that were triplicated as mustard-specific herbivory evolved. Using in vivo heterologous systems for the expression of olfactory receptors, we found that S. flava Or67bs, but not the homologs from microbe-feeding relatives, responded selectively to ITCs, each paralog detecting different ITC subsets. Consistent with this, S. flava was attracted to ITCs, as was Drosophila melanogaster expressing S. flava Or67b3 in the homologous Or67b olfactory circuit. ITCs were likely coopted as olfactory attractants through gene duplication and functional specialization (neofunctionalization and subfunctionalization) in S. flava, a recently derived herbivore.


Asunto(s)
Drosophilidae , Receptores Odorantes , Animales , Drosophila melanogaster , Drosophilidae/genética , Herbivoria/genética , Planta de la Mostaza , Aceites de Plantas , Receptores Odorantes/genética
4.
Proc Natl Acad Sci U S A ; 112(10): 3026-31, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624509

RESUMEN

Herbivory is a key innovation in insects, yet has only evolved in one-third of living orders. The evolution of herbivory likely involves major behavioral changes mediated by remodeling of canonical chemosensory modules. Herbivorous flies in the genus Scaptomyza (Drosophilidae) are compelling species in which to study the genomic architecture linked to the transition to herbivory because they recently evolved from microbe-feeding ancestors and are closely related to Drosophila melanogaster. We found that Scaptomyza flava, a leaf-mining specialist on plants in the family (Brassicaceae), was not attracted to yeast volatiles in a four-field olfactometer assay, whereas D. melanogaster was strongly attracted to these volatiles. Yeast-associated volatiles, especially short-chain aliphatic esters, elicited strong antennal responses in D. melanogaster, but weak antennal responses in electroantennographic recordings from S. flava. We sequenced the genome of S. flava and characterized this species' odorant receptor repertoire. Orthologs of odorant receptors, which detect yeast volatiles in D. melanogaster and mediate critical host-choice behavior, were deleted or pseudogenized in the genome of S. flava. These genes were lost step-wise during the evolution of Scaptomyza. Additionally, Scaptomyza has experienced gene duplication and likely positive selection in paralogs of Or67b in D. melanogaster. Olfactory sensory neurons expressing Or67b are sensitive to green-leaf volatiles. Major trophic shifts in insects are associated with chemoreceptor gene loss as recently evolved ecologies shape sensory repertoires.


Asunto(s)
Dieta , Drosophilidae/fisiología , Herbivoria , Receptores Odorantes/fisiología , Animales , Drosophilidae/clasificación , Drosophilidae/genética , Datos de Secuencia Molecular , Filogenia
5.
Curr Opin Plant Biol ; 16(4): 443-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23834766

RESUMEN

Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains genome-wide functionally important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to address this hypothesis. Population genomic studies of Arabidopsis thaliana and its relatives suggest spatial variation in herbivory maintains adaptive genetic variation controlling defense phenotypes, both within and among populations. Conversely, inter-species variation in plant defenses promotes adaptive genetic variation in herbivores. Emerging genomic model herbivores of Arabidopsis could illuminate how genetic variation in herbivores and plants interact simultaneously.


Asunto(s)
Artrópodos/genética , Cadena Alimentaria , Variación Genética , Plantas/genética , Selección Genética , Animales , Arabidopsis/genética , Artrópodos/fisiología , Evolución Biológica , Herbivoria , Modelos Biológicos
6.
PLoS One ; 7(12): e51027, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284655

RESUMEN

Maternally transmitted bacteria have been important players in the evolution of insects and other arthropods, affecting their nutrition, defense, development, and reproduction. Wolbachia are the best studied among these and typically the most prevalent. While several other bacteria have independently evolved a heritable lifestyle, less is known about their host ranges. Moreover, most groups of insects have not had their heritable microflora systematically surveyed across a broad range of their taxonomic diversity. To help remedy these shortcomings we used diagnostic PCR to screen for five groups of heritable symbionts-Arsenophonus spp., Cardinium hertigii, Hamiltonella defensa, Spiroplasma spp., and Wolbachia spp.-across the ants and lepidopterans (focusing, in the latter case, on two butterfly families-the Lycaenidae and Nymphalidae). We did not detect Cardinium or Hamiltonella in any host. Wolbachia were the most widespread, while Spiroplasma (ants and lepidopterans) and Arsenophonus (ants only) were present at low levels. Co-infections with different Wolbachia strains appeared especially common in ants and less so in lepidopterans. While no additional facultative heritable symbionts were found among ants using universal bacterial primers, microbes related to heritable enteric bacteria were detected in several hosts. In summary, our findings show that Wolbachia are the dominant heritable symbionts of ants and at least some lepidopterans. However, a systematic review of symbiont frequencies across host taxa revealed that this is not always the case across other arthropods. Furthermore, comparisons of symbiont frequencies revealed that the prevalence of Wolbachia and other heritable symbionts varies substantially across lower-level arthropod taxa. We discuss the correlates, potential causes, and implications of these patterns, providing hypotheses on host attributes that may shape the distributions of these influential bacteria.


Asunto(s)
Hormigas/microbiología , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Mariposas Diurnas/microbiología , Animales , Bacterias/clasificación , Especificidad del Huésped , Filogenia
7.
Science ; 333(6050): 1742-6, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21940893

RESUMEN

Most flowering plants establish mutualistic associations with insect pollinators to facilitate sexual reproduction. However, the evolutionary processes that gave rise to these associations remain poorly understood. We reconstructed the times of divergence, diversification patterns, and interaction networks of a diverse group of specialized orchids and their bee pollinators. In contrast to a scenario of coevolution by race formation, we show that fragrance-producing orchids originated at least three times independently after their fragrance-collecting bee mutualists. Whereas orchid diversification has apparently tracked the diversification of orchids' bee pollinators, bees appear to have depended on the diverse chemical environment of neotropical forests. We corroborated this apparent asymmetrical dependency by simulating co-extinction cascades in real interaction networks that lacked reciprocal specialization. These results suggest that the diversification of insect-pollinated angiosperms may have been facilitated by the exploitation of preexisting sensory biases of insect pollinators.


Asunto(s)
Abejas/genética , Abejas/fisiología , Evolución Biológica , Flores/anatomía & histología , Orchidaceae/genética , Orchidaceae/fisiología , Polinización , Simbiosis , Animales , Abejas/anatomía & histología , Abejas/clasificación , Ecosistema , Extinción Biológica , Femenino , Fósiles , Especiación Genética , Masculino , Datos de Secuencia Molecular , Odorantes , Orchidaceae/anatomía & histología , Orchidaceae/clasificación , Filogenia , Selección Genética
8.
Proc Biol Sci ; 278(1719): 2737-44, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21270033

RESUMEN

Transcontinental dispersals by organisms usually represent improbable events that constitute a major challenge for biogeographers. By integrating molecular phylogeny, historical biogeography and palaeoecology, we test a bold hypothesis proposed by Vladimir Nabokov regarding the origin of Neotropical Polyommatus blue butterflies, and show that Beringia has served as a biological corridor for the dispersal of these insects from Asia into the New World. We present a novel method to estimate ancestral temperature tolerances using distribution range limits of extant organisms, and find that climatic conditions in Beringia acted as a decisive filter in determining which taxa crossed into the New World during five separate invasions over the past 11 Myr. Our results reveal a marked effect of the Miocene-Pleistocene global cooling, and demonstrate that palaeoclimatic conditions left a strong signal on the ecology of present-day taxa in the New World. The phylogenetic conservatism in thermal tolerances that we have identified may permit the reconstruction of the palaeoecology of ancestral organisms, especially mobile taxa that can easily escape from hostile environments rather than adapt to them.


Asunto(s)
Migración Animal , Mariposas Diurnas/fisiología , Clima , Ecosistema , Paleontología , Filogeografía , Américas , Animales , Asia , Mariposas Diurnas/clasificación , Mariposas Diurnas/genética , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN
9.
Appl Environ Microbiol ; 77(1): 346-50, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21075876

RESUMEN

In this article, we describe the distributions of Entomoplasmatales bacteria across the ants, identifying a novel lineage of gut bacteria that is unique to the army ants. While our findings indicate that the Entomoplasmatales are not essential for growth or development, molecular analyses suggest that this relationship is host specific and potentially ancient. The documented trends add to a growing body of literature that hints at a diversity of undiscovered associations between ants and bacterial symbionts.


Asunto(s)
Hormigas/microbiología , Tenericutes/clasificación , Tenericutes/aislamiento & purificación , Animales , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Tracto Gastrointestinal/microbiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tenericutes/genética
10.
Proc Natl Acad Sci U S A ; 106(50): 21236-41, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19948964

RESUMEN

Ants are a dominant feature of terrestrial ecosystems, yet we know little about the forces that drive their evolution. Recent findings illustrate that their diets range from herbivorous to predaceous, with "herbivores" feeding primarily on exudates from plants and sap-feeding insects. Persistence on these nitrogen-poor food sources raises the question of how ants obtain sufficient nutrition. To investigate the potential role of symbiotic microbes, we have surveyed 283 species from 18 of the 21 ant subfamilies using molecular techniques. Our findings uncovered a wealth of bacteria from across the ants. Notable among the surveyed hosts were herbivorous "turtle ants" from the related genera Cephalotes and Procryptocerus (tribe Cephalotini). These commonly harbored bacteria from ant-specific clades within the Burkholderiales, Pseudomonadales, Rhizobiales, Verrucomicrobiales, and Xanthomonadales, and studies of lab-reared Cephalotes varians characterized these microbes as symbiotic residents of ant guts. Although most of these symbionts were confined to turtle ants, bacteria from an ant-specific clade of Rhizobiales were more broadly distributed. Statistical analyses revealed a strong relationship between herbivory and the prevalence of Rhizobiales gut symbionts within ant genera. Furthermore, a consideration of the ant phylogeny identified at least five independent origins of symbioses between herbivorous ants and related Rhizobiales. Combined with previous findings and the potential for symbiotic nitrogen fixation, our results strongly support the hypothesis that bacteria have facilitated convergent evolution of herbivory across the ants, further implicating symbiosis as a major force in ant evolution.


Asunto(s)
Hormigas/genética , Cadena Alimentaria , Tracto Gastrointestinal/microbiología , Simbiosis/genética , Animales , Hormigas/microbiología , Bacterias , Secuencia de Bases , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Rhizobiaceae , Especificidad de la Especie
11.
Evolution ; 63(3): 624-40, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19054050

RESUMEN

Wolbachia are the most prevalent and influential bacteria described among the insects to date. But despite their significance, we lack an understanding of their evolutionary histories. To describe the evolution of symbioses between Wolbachia and their hosts, we surveyed global collections of two diverse families of insects, the ants and lycaenid butterflies. In total, 54 Wolbachia isolates were typed using a Multi Locus Sequence Typing (MLST) approach, in which five unlinked loci were sequenced and analyzed to decipher evolutionary patterns. AMOVA and phylogenetic analyses demonstrated that related Wolbachia commonly infect related hosts, revealing a pattern of host association that was strongest among strains from the ants. A review of the literature indicated that horizontal transfer is most successful when Wolbachia move between related hosts, suggesting that patterns of host association are driven by specialization on a common physiological background. Aside from providing the broadest and strongest evidence to date for Wolbachia specialization, our findings also reveal that strains from New World ants differ markedly from those in ants from other locations. We, therefore, conclude that both geographic and phylogenetic barriers have promoted evolutionary divergence among these influential symbionts.


Asunto(s)
Hormigas/microbiología , Evolución Biológica , Mariposas Diurnas/microbiología , Wolbachia/genética , Animales , Hormigas/fisiología , Técnicas de Tipificación Bacteriana , Mariposas Diurnas/fisiología , Filogenia , Simbiosis , Wolbachia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...