Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39098546

RESUMEN

This is a case report of a 10-year-old with Ollier disease and an ovarian mass. Ollier disease, a rare disorder characterized by multiple enchondromas resulting in bone deformities, has been occasionally associated with ovarian juvenile granulosa cell tumor. This patient developed signs of precocious puberty and was found to have an ovarian tumor; however, pathology revealed a mixed sex-cord stromal tumor with components of juvenile granulosa and Sertoli-Leydig cell tumor. Tumor genomic testing revealed an IDH1 mutation. Mixed sex-cord stromal tumors of this type, also called "gynandroblastomas," have been associated with DICER1 mutations and DICER1 tumor predisposition syndrome but never with Ollier disease. Our findings expand the known spectrum of syndromic associations with this tumor type, with implications for tumor screening.

2.
Inflamm Bowel Dis ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102823

RESUMEN

BACKGROUND: Immune cell populations in the intestinal muscularis propria during colitis are poorly resolved. Maintaining homeostasis in this niche is critical, highlighted by the poorer prognosis of inflammatory bowel disease associated with muscularis propria inflammation. METHODS: This study utilizes single-cell RNA sequencing to survey the immune cell populations within the muscularis propria of normal colon and dextran sodium sulfate-induced colitis. Findings are validated by immunohistochemistry, flow cytometry and cell-lineage tracing in vivo, and in vitro assays with muscularis macrophages (MMφ). RESULTS: In naïve conditions, transcriptional duality is observed in MMφs with 2 major subpopulations: conventional resident Cx3cr1+ MMφs and Lyve1+ MMφs. The Lyve1+ population is phagocytic and expresses several known MMφ markers in mouse and human, confirming their identity as a bona fide MMφ subset. Single-cell transcriptomics indicate that resident MMφs are retained during colitis and exhibit plasticity toward an inflammatory profile. Lyve1+ MMφs, which express anti-inflammatory marker CD163, are absent during colitis, as confirmed by flow cytometry. In contrast, lineage tracing finds that resident Cx3cr1+ MMφs remain during colitis and are not completely replaced by the inflammatory infiltrating monocytes. In vitro studies provide biological evidence of the plasticity of resident Cx3cr1+ MMφs in response to lipopolysaccharide (LPS), mirroring transcriptional observations in vivo of their inflammatory plasticity. Potential markers for colitic MMφs, validated in animal models and in individuals with ulcerative colitis, are identified. CONCLUSIONS: Our findings contribute to the understanding of the immune system in the muscularis propria niche during colitis by resolving the heterogeneity and origins of colitic MMφs.


Involvement of the muscularis propria accompanies a poorer prognosis in IBD. This study characterizes muscularis macrophage subpopulations during colitis, highlighting the loss of anti-inflammatory LYVE-1+ macrophages and inflammatory plasticity in resident CX3CR1+ macrophages, providing insights into prognostic and therapeutic targets.

3.
Neuron ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39019043

RESUMEN

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.

4.
JCI Insight ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042470

RESUMEN

The goal of this study was to determine if transplantation of enteric neural stem cells (ENSCs) can rescue the enteric nervous system (ENS), restore gut motility, reduce colonic inflammation, and improve survival in the Ednrb knock-out (KO) mouse model of Hirschsprung disease (HSCR). ENSCs were isolated from mouse intestine, expanded to form neurospheres, and microinjected into the colon of recipient Ednrb KO mice. Transplanted ENSCs were identified in recipient colons as cell clusters in "neo-ganglia". Immunohistochemical evaluation demonstrated extensive cell migration away from the sites of cell delivery and across the muscle layers. Electrical field stimulation and optogenetics showed significantly enhanced contractile activity of aganglionic colonic smooth muscle following ENSC transplantation and confirmed functional neuromuscular integration of the transplanted ENSC-derived neurons. ENSC injection also partially restored the colonic migrating motor complex. Histological examination revealed a significant reduction in inflammation in ENSC-transplanted aganglionic recipient colon compared to sham-operated mice. Interestingly, mice that received cell transplant also had prolonged survival compared with controls. This study demonstrates that ENSC transplantation can improve outcomes in HSCR by restoring gut motility and reducing the severity of Hirschsprung-associated enterocolitis, the leading cause of death in human HSCR.

5.
BJS Open ; 8(3)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38776252

RESUMEN

BACKGROUND: In recent decades, the survival of children with congenital anomalies and paediatric cancer has improved dramatically such that there has been a steady shift towards understanding their lifelong health outcomes. Paediatric surgeons will actively manage such conditions in childhood and adolescence, however, adult surgeons must later care for these 'grown-ups' in adulthood. This article aims to highlight some of those rare disorders encountered by paediatric surgeons requiring long-term follow-up, their management in childhood and their survivorship impact, in order that the adult specialist may be better equipped with skills and knowledge to manage these patients into adulthood. METHODS: A comprehensive literature review was performed to identify relevant publications. Research studies, review articles and guidelines were sought, focusing on the paediatric management and long-term outcomes of surgical conditions of childhood. The article has been written for adult surgeon readership. RESULTS: This article describes the aforementioned conditions, their management in childhood and their lifelong implications, including: oesophageal atresia, tracheo-oesophageal fistula, malrotation, short bowel syndrome, duodenal atresia, gastroschisis, exomphalos, choledochal malformations, biliary atresia, Hirschsprung disease, anorectal malformations, congenital diaphragmatic hernia, congenital lung lesions and paediatric cancer. CONCLUSION: The increasing survivorship of children affected by surgical conditions will translate into a growing population of adults with lifelong conditions and specialist healthcare needs. The importance of transition from childhood to adulthood is becoming realized. It is hoped that this timely review will enthuse the readership to offer care for such vulnerable patients, and to collaborate with paediatric surgeons in providing successful and seamless transitional care.


Asunto(s)
Anomalías Congénitas , Humanos , Niño , Anomalías Congénitas/cirugía , Neoplasias/cirugía , Adulto , Procedimientos Quirúrgicos Operativos
6.
J Neurosci Methods ; 407: 110144, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670535

RESUMEN

BACKGROUND: The enteric nervous system (ENS) is comprised of neurons, glia, and neural progenitor cells that regulate essential gastrointestinal functions. Advances in high-efficiency enteric neuron culture would facilitate discoveries surrounding ENS regulatory processes, pathophysiology, and therapeutics. NEW METHOD: Development of a simple, robust, one-step method to culture murine enteric neurospheres in a 3D matrix that supports neural growth and differentiation. RESULTS: Myenteric plexus cells isolated from the entire length of adult murine small intestine formed ≥3000 neurospheres within 7 days. Matrigel-embedded neurospheres exhibited abundant neural stem and progenitor cells expressing Sox2, Sox10 and Msi1 by day 4. By day 5, neural progenitor cell marker Nestin appeared in the periphery of neurospheres prior to differentiation. Neurospheres produced extensive neurons and neurites, confirmed by Tubulin beta III, PGP9.5, HuD/C, and NeuN immunofluorescence, including neural subtypes Calretinin, ChAT, and nNOS following 8 days of differentiation. Individual neurons within and external to neurospheres generated depolarization induced action potentials which were inhibited in the presence of sodium channel blocker, Tetrodotoxin. Differentiated neurospheres also contained a limited number of glia and endothelial cells. COMPARISON WITH EXISTING METHODS: This novel one-step neurosphere growth and differentiation culture system, in 3D format (in the presence of GDNF, EGF, and FGF2), allows for ∼2-fold increase in neurosphere count in the derivation of enteric neurons with measurable action potentials. CONCLUSION: Our method describes a novel, robust 3D culture of electrophysiologically active enteric neurons from adult myenteric neural stem and progenitor cells.


Asunto(s)
Plexo Mientérico , Neuronas , Animales , Plexo Mientérico/citología , Plexo Mientérico/fisiología , Neuronas/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Célula/métodos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Células-Madre Neurales/efectos de los fármacos , Diferenciación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Células Cultivadas , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de los fármacos , Laminina/farmacología , Combinación de Medicamentos , Proteoglicanos/farmacología , Masculino , Neurogénesis/fisiología , Neurogénesis/efectos de los fármacos , Colágeno
7.
Nat Commun ; 15(1): 2479, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509106

RESUMEN

Neurointestinal diseases cause significant morbidity and effective treatments are lacking. This study aimes to test the feasibility of transplanting autologous enteric neural stem cells (ENSCs) to rescue the enteric nervous system (ENS) in a model of colonic aganglionosis. ENSCs are isolated from a segment of small intestine from Wnt1::Cre;R26iDTR mice in which focal colonic aganglionosis is simultaneously created by diphtheria toxin injection. Autologous ENSCs are isolated, expanded, labeled with lentiviral-GFP, and transplanted into the aganglionic segment in vivo. ENSCs differentiate into neurons and glia, cluster to form neo-ganglia, and restore colonic contractile activity as shown by electrical field stimulation and optogenetics. Using a non-lethal model of colonic aganglionosis, our results demonstrate the potential of autologous ENSC therapy to improve functional outcomes in neurointestinal disease, laying the groundwork for clinical application of this regenerative cell-based approach.


Asunto(s)
Neoplasias Colorrectales , Sistema Nervioso Entérico , Enfermedad de Hirschsprung , Células-Madre Neurales , Ratones , Animales , Enfermedad de Hirschsprung/terapia , Trasplante de Células Madre/métodos , Células-Madre Neurales/trasplante , Neuronas
8.
Stem Cells Transl Med ; 13(5): 490-504, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38387006

RESUMEN

Regenerative cell therapy to replenish the missing neurons and glia in the aganglionic segment of Hirschsprung disease represents a promising treatment option. However, the success of cell therapies for this condition are hindered by poor migration of the transplanted cells. This limitation is in part due to a markedly less permissive extracellular environment in the postnatal gut than that of the embryo. Coordinated interactions between enteric neural crest-derived cells (ENCDCs) and their local environment drive migration along the embryonic gut during development of the enteric nervous system. Modifying transplanted cells, or the postnatal extracellular environment, to better recapitulate embryonic ENCDC migration could be leveraged to improve the engraftment and coverage of stem cell transplants. We compared the transcriptomes of ENCDCs from the embryonic intestine to that of postnatal-derived neurospheres and identified 89 extracellular matrix (ECM)-associated genes that are differentially expressed. Agrin, a heparin sulfate proteoglycan with a known inhibitory effect on ENCDC migration, was highly over-expressed by postnatal-derived neurospheres. Using a function-blocking antibody and a shRNA-expressing lentivirus, we show that inhibiting agrin promotes ENCDC migration in vitro and following cell transplantation ex vivo and in vivo. This enhanced migration is associated with an increased proportion of GFAP + cells, whose migration is especially enhanced.


Asunto(s)
Agrina , Movimiento Celular , Células-Madre Neurales , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Ratones , Agrina/metabolismo , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/citología , Colon/metabolismo , Colon/citología , Cresta Neural/metabolismo , Cresta Neural/citología , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/terapia , Trasplante de Células Madre/métodos
9.
Cell Mol Gastroenterol Hepatol ; 17(6): 907-921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38272444

RESUMEN

BACKGROUND & AIMS: Intestinal inflammation is associated with loss of enteric cholinergic neurons. Given the systemic anti-inflammatory role of cholinergic innervation, we hypothesized that enteric cholinergic neurons similarly possess anti-inflammatory properties and may represent a novel target to treat inflammatory bowel disease. METHODS: Mice were fed 2.5% dextran sodium sulfate (DSS) for 7 days to induce colitis. Cholinergic enteric neurons, which express choline acetyltransferase (ChAT), were focally ablated in the midcolon of ChAT::Cre;R26-iDTR mice by local injection of diphtheria toxin before colitis induction. Activation of enteric cholinergic neurons was achieved using ChAT::Cre;R26-ChR2 mice, in which ChAT+ neurons express channelrhodopsin-2, with daily blue light stimulation delivered via an intracolonic probe during the 7 days of DSS treatment. Colitis severity, ENS structure, and smooth muscle contractility were assessed by histology, immunohistochemistry, quantitative polymerase chain reaction, organ bath, and electromyography. In vitro studies assessed the anti-inflammatory role of enteric cholinergic neurons on cultured muscularis macrophages. RESULTS: Ablation of ChAT+ neurons in DSS-treated mice exacerbated colitis, as measured by weight loss, colon shortening, histologic inflammation, and CD45+ cell infiltration, and led to colonic dysmotility. Conversely, optogenetic activation of enteric cholinergic neurons improved colitis, preserved smooth muscle contractility, protected against loss of cholinergic neurons, and reduced proinflammatory cytokine production. Both acetylcholine and optogenetic cholinergic neuron activation in vitro reduced proinflammatory cytokine expression in lipopolysaccharide-stimulated muscularis macrophages. CONCLUSIONS: These findings show that enteric cholinergic neurons have an anti-inflammatory role in the colon and should be explored as a potential inflammatory bowel disease treatment.


Asunto(s)
Colina O-Acetiltransferasa , Neuronas Colinérgicas , Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Optogenética , Animales , Colitis/patología , Colitis/inducido químicamente , Neuronas Colinérgicas/patología , Neuronas Colinérgicas/metabolismo , Optogenética/métodos , Ratones , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/genética , Sulfato de Dextran/toxicidad , Sistema Nervioso Entérico/patología , Inflamación/patología , Colon/patología , Colon/inervación , Macrófagos/metabolismo , Macrófagos/inmunología , Músculo Liso/patología , Músculo Liso/metabolismo , Masculino
10.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38293133

RESUMEN

The enteric nervous system (ENS) is a tantalizing frontier in neuroscience. With the recent emergence of single cell transcriptomic technologies, this rare and poorly understood tissue has begun to be better characterized in recent years. A precise functional mapping of enteric neuron diversity is critical for understanding ENS biology and enteric neuropathies. Nonetheless, this pursuit has faced considerable technical challenges. By leveraging different methods to compare available primary mouse and human ENS datasets, we underscore the urgent need for careful identity annotation, achieved through the harmonization and advancements of wet lab and computational techniques. We took different approaches including differential gene expression, module scoring, co-expression and correlation analysis, unbiased biological function hierarchical clustering, data integration and label transfer to compare and contrast functional annotations of several independently reported ENS datasets. These analyses highlight substantial discrepancies stemming from an overreliance on transcriptomics data without adequate validation in tissues. To achieve a comprehensive understanding of enteric neuron identity and their functional context, it is imperative to expand tissue sources and incorporate innovative technologies such as multiplexed imaging, electrophysiology, spatial transcriptomics, as well as comprehensive profiling of epigenome, proteome, and metabolome. Harnessing human pluripotent stem cell (hPSC) models provides unique opportunities for delineating lineage trees of the human ENS, and offers unparalleled advantages, including their scalability and compatibility with genetic manipulation and unbiased screens. We encourage a paradigm shift in our comprehension of cellular complexity and function in the ENS by calling for large-scale collaborative efforts and research investments.

11.
Ann Surg ; 279(2): 231-239, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37916404

RESUMEN

OBJECTIVE: To create a blueprint for surgical department leaders, academic institutions, and funding agencies to optimally support surgeon-scientists. BACKGROUND: Scientific contributions by surgeons have been transformative across many medical disciplines. Surgeon-scientists provide a distinct approach and mindset toward key scientific questions. However, lack of institutional support, pressure for increased clinical productivity, and growing administrative burden are major challenges for the surgeon-scientist, as is the time-consuming nature of surgical training and practice. METHODS: An American Surgical Association Research Sustainability Task Force was created to outline a blueprint for sustainable science in surgery. Leaders from top NIH-sponsored departments of surgery engaged in video and in-person meetings between January and April 2023. A strength, weakness, opportunities, threats analysis was performed, and workgroups focused on the roles of surgeons, the department and institutions, and funding agencies. RESULTS: Taskforce recommendations: (1) SURGEONS: Growth mindset : identifying research focus, long-term planning, patience/tenacity, team science, collaborations with disparate experts; Skill set : align skills and research, fill critical skill gaps, develop team leadership skills; DEPARTMENT OF SURGERY (DOS): (2) MENTORSHIP: Chair : mentor-mentee matching/regular meetings/accountability, review of junior faculty progress, mentorship training requirement, recognition of mentorship (eg, relative value unit equivalent, awards; Mentor: dedicated time, relevant scientific expertise, extramural funding, experience and/or trained as mentor, trusted advisor; Mentee : enthusiastic/eager, proactive, open to feedback, clear about goals; (3) FINANCIAL SUSTAINABILITY: diversification of research portfolio, identification of matching funding sources, departmental resource awards (eg, T-/P-grants), leveraging of institutional resources, negotiation of formalized/formulaic funds flow investment from academic medical center toward science, philanthropy; (4) STRUCTURAL/STRATEGIC SUPPORT: Structural: grants administrative support, biostats/bioinformatics support, clinical trial and research support, regulatory support, shared departmental laboratory space/equipment; Strategic: hiring diverse surgeon-scientist/scientists faculty across DOS, strategic faculty retention/ recruitment, philanthropy, career development support, progress tracking, grant writing support, DOS-wide research meetings, regular DOS strategic research planning; (5) COMMUNITY AND CULTURE: Community: right mix of faculty, connection surgeon with broad scientific community; Culture: building research infrastructure, financial support for research, projecting importance of research (awards, grand rounds, shoutouts); (6) THE ROLE OF INSTITUTIONS: Foundation: research space co-location, flexible start-up packages, courses/mock study section, awards, diverse institutional mentorship teams; Nurture: institutional infrastructure, funding (eg, endowed chairs), promotion friendly toward surgeon-scientists, surgeon-scientists in institutional leadership positions; Expectations: RVU target relief, salary gap funding, competitive starting salaries, longitudinal salary strategy; (7) THE ROLE OF FUNDING AGENCIES: change surgeon research training paradigm, offer alternate awards to K-awards, increasing salary cap to reflect market reality, time extension for surgeon early-stage investigator status, surgeon representation on study section, focused award strategies for professional societies/foundations. CONCLUSIONS: Authentic recommitment from surgeon leaders with intentional and ambitious actions from institutions, corporations, funders, and society is essential in order to reap the essential benefits of surgeon-scientists toward advancements of science.


Asunto(s)
Investigación Biomédica , Cirujanos , Humanos , Estados Unidos , Mentores , Docentes , Centros Médicos Académicos , Movilidad Laboral , National Institutes of Health (U.S.)
12.
Cell Transplant ; 32: 9636897231215233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38049927

RESUMEN

The enteric nervous system (ENS) is an extensive network of neurons and glia within the wall of the gastrointestinal (GI) tract that regulates many essential GI functions. Consequently, disorders of the ENS due to developmental defects, inflammation, infection, or age-associated neurodegeneration lead to serious neurointestinal diseases. Despite the prevalence and severity of these diseases, effective treatments are lacking as they fail to directly address the underlying pathology. Neuronal stem cell therapy represents a promising approach to treating diseases of the ENS by replacing the absent or injured neurons, and an autologous source of stem cells would be optimal by obviating the need for immunosuppression. We utilized the swine model to address key questions concerning cell isolation, delivery, engraftment, and fate in a large animal relevant to human therapy. We successfully isolated neural stem cells from a segment of small intestine resected from 1-month-old swine. Enteric neuronal stem cells (ENSCs) were expanded as neurospheres that grew optimally in low-oxygen (5%) culture conditions. Enteric neuronal stem cells were labeled by lentiviral green fluorescent protein (GFP) transduction, then transplanted into the same swine from which they had been harvested. Endoscopic ultrasound was then utilized to deliver the ENSCs (10,000-30,000 neurospheres per animal) into the rectal wall. At 10 and 28 days following injection, autologously derived ENSCs were found to have engrafted within rectal wall, with neuroglial differentiation and no evidence of ectopic spreading. These findings strongly support the feasibility of autologous cell isolation and delivery using a clinically useful and minimally invasive technique, bringing us closer to first-in-human ENSC therapy for neurointestinal diseases.


Asunto(s)
Sistema Nervioso Entérico , Células-Madre Neurales , Humanos , Animales , Porcinos , Lactante , Neuronas/metabolismo , Intestino Delgado , Neuroglía
13.
Dis Model Mech ; 16(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095019

RESUMEN

Neuroblastoma is the most common extracranial solid tumor of childhood and accounts for a significant share of childhood cancer deaths. Prior studies utilizing RNA sequencing of bulk tumor populations showed two predominant cell states characterized by high and low expression of neuronal genes. Although cells respond to treatment by altering their gene expression, it is unclear whether this reflects shifting balances of distinct subpopulations or plasticity of individual cells. Using mouse and human neuroblastoma cell lines lacking MYCN amplification, we show that the antigen CD49b (also known as ITGA2) distinguishes these subpopulations. CD49b expression marked proliferative cells with an immature gene expression program, whereas CD49b-negative cells expressed differentiated neuronal marker genes and were non-cycling. Sorted populations spontaneously switched between CD49b expression states in culture, and CD49b-negative cells could generate rapidly growing, CD49b-positive tumors in mice. Although treatment with the chemotherapy drug doxorubicin selectively killed CD49b-positive cells in culture, the CD49b-positive population recovered when treatment was withdrawn. We profiled histone 3 (H3) lysine 27 acetylation (H3K27ac) to identify enhancers and super enhancers that were specifically active in each population and found that CD49b-negative cells maintained the priming H3 lysine 4 methylation (H3K4me1) mark at elements that were active in cells with high expression of CD49b. Improper maintenance of primed enhancer elements might thus underlie cellular plasticity in neuroblastoma, representing potential therapeutic targets for this lethal tumor.


Asunto(s)
Histonas , Neuroblastoma , Humanos , Animales , Ratones , Histonas/metabolismo , Lisina/metabolismo , Integrina alfa2/metabolismo , Diferenciación Celular/genética , Neuroblastoma/metabolismo
14.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958648

RESUMEN

The enteric nervous system (ENS) is principally derived from vagal neural crest cells that migrate caudally along the entire length of the gastrointestinal tract, giving rise to neurons and glial cells in two ganglionated plexuses. Incomplete migration of enteric neural crest-derived cells (ENCDC) leads to Hirschsprung disease, a congenital disorder characterized by the absence of enteric ganglia along variable lengths of the colorectum. Our previous work strongly supported the essential role of the avian ceca, present at the junction of the midgut and hindgut, in hindgut ENS development, since ablation of the cecal buds led to incomplete ENCDC colonization of the hindgut. In situ hybridization shows bone morphogenetic protein-4 (BMP4) is highly expressed in the cecal mesenchyme, leading us to hypothesize that cecal BMP4 is required for hindgut ENS development. To test this, we modulated BMP4 activity using embryonic intestinal organ culture techniques and retroviral infection. We show that overexpression or inhibition of BMP4 in the ceca disrupts hindgut ENS development, with GDNF playing an important regulatory role. Our results suggest that these two important signaling pathways are required for normal ENCDC migration and enteric ganglion formation in the developing hindgut ENS.


Asunto(s)
Neoplasias Colorrectales , Sistema Nervioso Entérico , Humanos , Transducción de Señal/fisiología , Diferenciación Celular/fisiología , Sistema Nervioso Entérico/metabolismo , Movimiento Celular/fisiología , Neoplasias Colorrectales/metabolismo , Cresta Neural/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo
15.
Stem Cell Res Ther ; 14(1): 232, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667277

RESUMEN

BACKGROUND: Enteric neuropathies, which result from abnormalities of the enteric nervous system, are associated with significant morbidity and high health-care costs, but current treatments are unsatisfactory. Cell-based therapy offers an innovative approach to replace the absent or abnormal enteric neurons and thereby restore gut function. METHODS: Enteric neuronal stem cells (ENSCs) were isolated from the gastrointestinal tract of Wnt1-Cre;R26tdTomato mice and generated neurospheres (NS). NS transplants were performed via injection into the mid-colon mesenchyme of nNOS-/- mouse, a model of colonic dysmotility, using either 1 (n = 12) or 3 (n = 12) injections (30 NS per injection) targeted longitudinally 1-2 mm apart. Functional outcomes were assessed up to 6 weeks later using electromyography (EMG), electrical field stimulation (EFS), optogenetics, and by measuring colorectal motility. RESULTS: Transplanted ENSCs formed nitrergic neurons in the nNOS-/- recipient colon. Multiple injections of ENSCs resulted in a significantly larger area of coverage compared to single injection alone and were associated with a marked improvement in colonic function, demonstrated by (1) increased colonic muscle activity by EMG recording, (2) faster rectal bead expulsion, and (3) increased fecal pellet output in vivo. Organ bath studies revealed direct neuromuscular communication by optogenetic stimulation of channelrhodopsin-expressing ENSCs and restoration of smooth muscle relaxation in response to EFS. CONCLUSIONS: These results demonstrate that transplanted ENSCs can form effective neuromuscular connections and improve colonic motor function in a model of colonic dysmotility, and additionally reveal that multiple sites of cell delivery led to an improved response, paving the way for optimized clinical trial design.


Asunto(s)
Músculo Liso , Neuronas , Animales , Ratones , Tratamiento Basado en Trasplante de Células y Tejidos , Colon , Estimulación Eléctrica
16.
Surgery ; 174(2): 209-213, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37221107

RESUMEN

BACKGROUND: The surgeon-scientist brings a unique perspective to surgical research. The Association of Academic Surgeons and Society of University Surgeons foster the development of surgeon-scientists through foundation awards to residents and junior faculty. We sought to evaluate the academic success of surgeons who received an Association for Academic Surgery/Society of University Surgeons award. METHODS: Information was collected for individuals who received a resident or junior faculty research award from the Association for Academic Surgery or Society of University Surgeons. Google Scholar, Scopus, and the National Institutes of Health Research Portfolio Online Reporting Tools: Expenditures and Results were used to assess scholarly achievements. RESULTS: Eighty-two resident awardees were included, 31 (38%) of whom were female. Thirteen (24%) are now professors, 12 (22%) are division chiefs, and 4 (7%) are department chairs. Resident awardees have a median of 886 citations (interquartile range 237-2,111) and an H-index of 14 (interquartile range 7-23). Seven (13%) went on to receive K08/K23 awards, and 7 (13%) received R01s, with a total of about $200 million in National Institutes of Health funding (79-fold return on investment). Thirty-four junior faculty awardees were included, 10 (29%) of whom were female. Thirteen (38%) are now professors, 12 (35%) are division chiefs, and 7 (21%) are department chairs. Faculty awardees have a median of 2,617 citations (interquartile range 1,343-7,857) and an H-index of 25 (interquartile range 18-49). Four (12%) received K08 or K23 awards, and 10 (29%) received R01s, with about $139 million in National Institutes of Health funding (98-fold return on investment). CONCLUSION: Association for Academic Surgery/Society of University Surgeons research awardees experience high degrees of success in academic surgery. Most resident awardees pursue fellowship training and remain in academic surgery. A high percentage of both faculty and resident awardees hold leadership positions and successfully achieve National Institutes of Health funding.


Asunto(s)
Éxito Académico , Distinciones y Premios , Investigación Biomédica , Cirujanos , Estados Unidos , Humanos , Femenino , Masculino , Universidades , National Institutes of Health (U.S.)
17.
Development ; 150(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039233

RESUMEN

The gastrointestinal tract is innervated by an intrinsic neuronal network, known as the enteric nervous system (ENS), and by extrinsic axons arising from peripheral ganglia. The nerve of Remak (NoR) is an avian-specific sacral neural crest-derived ganglionated structure that extends from the cloaca to the proximal midgut and, similar to the pelvic plexus, provides extrinsic innervation to the distal intestine. The molecular mechanisms controlling extrinsic nerve fiber growth into the gut is unknown. In vertebrates, CXCR4, a cell-surface receptor for the CXCL12 chemokine, regulates migration of neural crest cells and axon pathfinding. We have employed chimeric tissue recombinations and organ culture assays to study the role of CXCR4 and CXCL12 molecules in the development of colorectal innervation. CXCR4 is specifically expressed in nerve fibers arising from the NoR and pelvic plexus, while CXCL12 is localized to the hindgut mesenchyme and enteric ganglia. Overexpression of CXCL12 results in significantly enhanced axonal projections to the gut from the NoR, while CXCR4 inhibition disrupts nerve fiber extension, supporting a previously unreported role for CXCR4 and CXCL12 signaling in extrinsic innervation of the colorectum.


Asunto(s)
Sistema Nervioso Entérico , Tracto Gastrointestinal , Animales , Tracto Gastrointestinal/inervación , Colon , Neuronas/fisiología , Transducción de Señal , Cresta Neural
18.
Cell Rep ; 42(3): 112194, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36857184

RESUMEN

The enteric nervous system (ENS) consists of glial cells (EGCs) and neurons derived from neural crest precursors. EGCs retain capacity for large-scale neurogenesis in culture, and in vivo lineage tracing has identified neurons derived from glial cells in response to inflammation. We thus hypothesize that EGCs possess a chromatin structure poised for neurogenesis. We use single-cell multiome sequencing to simultaneously assess transcription and chromatin accessibility in EGCs undergoing spontaneous neurogenesis in culture, as well as small intestine myenteric plexus EGCs. Cultured EGCs maintain open chromatin at genomic loci accessible in neurons, and neurogenesis from EGCs involves dynamic chromatin rearrangements with a net decrease in accessible chromatin. A subset of in vivo EGCs, highly enriched within the myenteric ganglia and that persist into adulthood, have a gene expression program and chromatin state consistent with neurogenic potential. These results clarify the mechanisms underlying EGC potential for neuronal fate transition.


Asunto(s)
Sistema Nervioso Entérico , Ganglios , Multiómica , Neurogénesis , Neuroglía , Análisis de la Célula Individual , Neuroglía/clasificación , Neuroglía/citología , Neuroglía/metabolismo , Neurogénesis/genética , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , ARN/análisis , ARN/genética , Ganglios/citología , Masculino , Femenino , Animales , Ratones , Sistema Nervioso Entérico/citología , Análisis de Expresión Génica de una Sola Célula , Técnicas de Cultivo de Célula , Intestino Delgado/citología , Destete
19.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36982286

RESUMEN

Neurons and glia of the peripheral nervous system are derived from progenitor cell populations, originating from embryonic neural crest. The neural crest and vasculature are intimately associated during embryonic development and in the mature central nervous system, in which they form a neurovascular unit comprised of neurons, glia, pericytes, and vascular endothelial cells that play important roles in health and disease. Our group and others have previously reported that postnatal populations of stem cells originating from glia or Schwann cells possess neural stem cell qualities, including rapid proliferation and differentiation into mature glia and neurons. Bone marrow receives sensory and sympathetic innervation from the peripheral nervous system and is known to contain myelinating and unmyelinating Schwann cells. Herein, we describe a population of neural crest-derived Schwann cells residing in a neurovascular niche of bone marrow in association with nerve fibers. These Schwann cells can be isolated and expanded. They demonstrate plasticity in vitro, generating neural stem cells that exhibit neurogenic potential and form neural networks within the enteric nervous system in vivo following transplantation to the intestine. These cells represent a novel source of autologous neural stem cells for the treatment of neurointestinal disorders.


Asunto(s)
Células Endoteliales , Células-Madre Neurales , Femenino , Embarazo , Humanos , Neurogénesis/fisiología , Diferenciación Celular/fisiología , Células de Schwann/fisiología , Células de la Médula Ósea , Cresta Neural
20.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36779913

RESUMEN

Enteric nervous system development relies on intestinal colonization by enteric neural crest-derived cells (ENCDCs). This is driven by a population of highly migratory and proliferative ENCDCs at the wavefront, but the molecular characteristics of these cells are unknown. ENCDCs from the wavefront and the trailing region were isolated and subjected to RNA-seq. Wavefront-ENCDCs were transcriptionally distinct from trailing ENCDCs, and temporal modelling confirmed their relative immaturity. This population of ENCDCs exhibited altered expression of ECM and cytoskeletal genes, consistent with a migratory phenotype. Unlike trailing ENCDCs, the wavefront lacked expression of genes related to neuronal or glial maturation. As wavefront ENCDC genes were associated with migration and developmental immaturity, the genes that remain expressed in later progenitor populations may be particularly pertinent to understanding the maintenance of ENCDC progenitor characteristics. Dusp6 expression was specifically upregulated at the wavefront. Inhibiting DUSP6 activity prevented wavefront colonization of the hindgut, and inhibited the migratory ability of post-colonized ENCDCs from midgut and postnatal neurospheres. These effects were reversed by simultaneous inhibition of ERK signaling, indicating that DUSP6-mediated ERK inhibition is required for ENCDC migration in mouse and chick.


Asunto(s)
Sistema Nervioso Entérico , Ratones , Animales , Cresta Neural/metabolismo , Transcriptoma , Movimiento Celular/fisiología , Intestinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA