Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; : e2400228, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39195571

RESUMEN

The stratum corneum, which acts as a strong barrier against external agents, presents a significant challenge to transdermal drug delivery. In this regard, microneedle (MN) patches, designed as modern systems for drug delivery via permeation through the skin with the ability to pass through the stratum corneum, are known to be convenient, painless, and effective. In fact, MN have shown significant breakthroughs in transdermal drug delivery, and among the various types, hydrogel MN (HMNs) have demonstrated desirable inherent properties. Despite advancements, issues such as limited loading capacity, uncontrolled drug release rates, and non-uniform therapeutic approaches persist. Conversely, nanomaterials (NMs) have shown significant promise in medical applications, however, their efficacy and applicability are constrained by challenges including poor stability, low bioavailability, limited payload capacity, and rapid clearance by the immune system. Incorporation of NMs within HMNs offers new prospects to address the challenges associated with HMNs and NMs. This combination can provide a promising field of research for improved and effective delivery of therapeutic agents and mitigate certain adverse effects, addressing current clinical concerns. The current review highlights the use of NMs in HMNs for various therapeutic and diagnostic applications.

2.
Int J Biol Macromol ; 222(Pt A): 1605-1618, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36116591

RESUMEN

Advanced platelet-rich fibrin (A-PRF) provides long-term release of growth factors that potentially accelerate wound healing. In this study, core-shell nanofibrous structure of polyvinyl alcohol (PVA) core and gelatin (Gel) shell containing A-PRF is fabricated through coaxial electrospinning method. PVA/(Gel/A-PRF) core-shell nanofibers had the highest porosity, specific surface area and hydrophilicity among all the studied nanofibers. PVA/(Gel/A-PRF) core-shell nanofibers with a tensile stress of 7.43 ± 0.38 MPa and an elastic modulus of 102.05 ± 9.36 MPa had higher mechanical properties than PVA/Gel/A-PRF and PVA/Gel blend nanofibers. PVA/(Gel/A-PRF) nanofibers had a 47.41 ± 1.97 % degradability over 7 days of immersion in PBS. The release of VEGF and PDGF-AB growth factors from PVA/(Gel/A-PRF) core-shell nanofibers and PVA/Gel/A-PRF blend nanofibers were evaluated. It was shown that L929 cell proliferation and adhesion on PVA/(Gel/A-PRF) core-shell nanofibers were significantly higher than other samples. Also, chicken chorioallantoic membrane (CAM) assay revealed that the highest angiogenic potential among the studied samples related to PVA/(Gel/A-PRF) sample. In vivo studies on a rat model showed wound closure for PVA/(Gel/A-PRF) group was 97.83 ± 2.03 % after 11 days. Histopathological and immunohistochemical examinations approved the acceleration of wound healing by PVA/(Gel/A-PRF) core-shell nanofiber dressing. The results strongly recommend the use of PVA/(Gel/A-PRF) core-shell nanofiber dressing for the repair of full-thickness wounds.


Asunto(s)
Nanofibras , Fibrina Rica en Plaquetas , Ratas , Animales , Nanofibras/química , Cicatrización de Heridas , Vendajes , Alcohol Polivinílico/química , Gelatina/química , Fibrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA