Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
PLoS One ; 18(3): e0278589, 2023.
Article En | MEDLINE | ID: mdl-36913341

External causes continue to be one of the main causes of mortality in the world and Cabo Verde is no exception. Economic evaluations can be used to demonstrate the disease burden of public health problems such as injuries and external causes and support prioritization of interventions aimed at improving the health of the population. The objective of this study was to estimate the indirect costs of premature mortality in 2018 due to injuries and other consequences of external causes in Cabo Verde. Years of potential life lost, years of potential productive life lost and human capital approach were used to estimate the burden and indirect costs of premature mortality. In 2018, 244 deaths were registered due to injury and other consequences of external causes. Males were responsible for 85.4% and 87.73% of years of potential life lost and years of potential productive life lost, respectively. The cost of productivity lost due to premature death caused by injury was 4,580,225.91 USD. The social and economic burden due to trauma was substantial. There is a need for more evidence on the burden of disease due to injuries and their consequences, to support the implementation of targeted multi-sectoral strategies and policies for the prevention, management, and reduction of costs due to injuries in Cabo Verde.


Cost of Illness , Mortality, Premature , Male , Humans , Cabo Verde , Cost-Benefit Analysis , Public Health , Life Expectancy
2.
Sci Rep ; 12(1): 13893, 2022 08 16.
Article En | MEDLINE | ID: mdl-35974073

Surveillance of malaria vector species and the monitoring of insecticide resistance are essential to inform malaria control strategies and support the reduction of infections and disease. Genetic barcoding of mosquitoes is a useful tool to assist the high-throughput surveillance of insecticide resistance, discriminate between sibling species and to detect the presence of Plasmodium infections. In this study, we combined multiplex PCR, custom designed dual indexing, and Illumina next generation sequencing for high throughput single nucleotide polymorphism (SNP)-profiling of four species from the Anopheles (An.) gambiae complex (An. gambiae sensu stricto, An. coluzzii, An. arabiensis and An. melas). By amplifying and sequencing only 14 genetic fragments (500 bp each), we were able to simultaneously detect Plasmodium infection; insecticide resistance-conferring SNPs in ace1, gste2, vgsc and rdl genes; the partial sequences of nuclear ribosomal internal transcribed spacers (ITS1 and ITS2) and intergenic spacers (IGS), Short INterspersed Elements (SINE), as well as mitochondrial genes (cox1 and nd4) for species identification and genetic diversity. Using this amplicon sequencing approach with the four selected An. gambiae complex species, we identified a total of 15 non-synonymous mutations in the insecticide target genes, including previously described mutations associated with resistance and two new mutations (F1525L in vgsc and D148E in gste2). Overall, we present a reliable and cost-effective high-throughput panel for surveillance of An. gambiae complex mosquitoes in malaria endemic regions.


Anopheles , Insecticides , Malaria , Animals , Anopheles/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics
3.
Sci Rep ; 12(1): 11719, 2022 07 09.
Article En | MEDLINE | ID: mdl-35810191

In November 2015, cases of Zika virus infection were recorded in Cabo Verde (Africa), originating from Brazil. The outbreak subsided after seven months with 7580 suspected cases. We performed a serological survey (n = 431) in Praia, the capital city, 3 months after transmission ceased. Serum samples were screened for arbovirus antibodies using ELISA techniques and revealed seroconverted individuals with Zika (10.9%), dengue (1-4) (12.5%), yellow fever (0.2%) and chikungunya (2.6%) infections. Zika seropositivity was predominantly observed amongst females (70%). Using a logistic model, risk factors for increased odds of Zika seropositivity included age, self-reported Zika infection, and dengue seropositivity. Serological data from Zika and dengue virus assays were strongly correlated (Spearman's rs = 0.80), which reduced when using a double antigen binding ELISA (Spearman's rs = 0.54). Overall, our work improves an understanding of how Zika and other arboviruses have spread throughout the Cabo Verde population. It also demonstrates the utility of serological assay formats for outbreak investigations.


Arbovirus Infections , Chikungunya Fever , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Arbovirus Infections/epidemiology , Cabo Verde , Chikungunya Fever/epidemiology , Disease Outbreaks , Female , Humans , Zika Virus Infection/epidemiology
4.
BMC Public Health ; 22(1): 54, 2022 01 09.
Article En | MEDLINE | ID: mdl-35000578

BACKGROUND: Understanding the impact of the burden of COVID-19 is key to successfully navigating the COVID-19 pandemic. As part of a larger investigation on COVID-19 mortality impact, this study aims to estimate the Potential Years of Life Lost (PYLL) in 17 countries and territories across the world (Australia, Brazil, Cape Verde, Colombia, Cyprus, France, Georgia, Israel, Kazakhstan, Peru, Norway, England & Wales, Scotland, Slovenia, Sweden, Ukraine, and the United States [USA]). METHODS: Age- and sex-specific COVID-19 death numbers from primary national sources were collected by an international research consortium. The study period was established based on the availability of data from the inception of the pandemic to the end of August 2020. The PYLL for each country were computed using 80 years as the maximum life expectancy. RESULTS: As of August 2020, 442,677 (range: 18-185,083) deaths attributed to COVID-19 were recorded in 17 countries which translated to 4,210,654 (range: 112-1,554,225) PYLL. The average PYLL per death was 8.7 years, with substantial variation ranging from 2.7 years in Australia to 19.3 PYLL in Ukraine. North and South American countries as well as England & Wales, Scotland and Sweden experienced the highest PYLL per 100,000 population; whereas Australia, Slovenia and Georgia experienced the lowest. Overall, males experienced higher PYLL rate and higher PYLL per death than females. In most countries, most of the PYLL were observed for people aged over 60 or 65 years, irrespective of sex. Yet, Brazil, Cape Verde, Colombia, Israel, Peru, Scotland, Ukraine, and the USA concentrated most PYLL in younger age groups. CONCLUSIONS: Our results highlight the role of PYLL as a tool to understand the impact of COVID-19 on demographic groups within and across countries, guiding preventive measures to protect these groups under the ongoing pandemic. Continuous monitoring of PYLL is therefore needed to better understand the burden of COVID-19 in terms of premature mortality.


COVID-19 , Aged , Brazil , Female , Humans , Life Expectancy , Male , Mortality , Mortality, Premature , Pandemics , SARS-CoV-2 , United States
5.
Parasit Vectors ; 14(1): 582, 2021 Nov 21.
Article En | MEDLINE | ID: mdl-34802463

BACKGROUND: Due to the lack of vaccines, malaria control mainly involves the control of anopheline vectors (Anopheles spp.) using chemical insecticides. However, the prolonged and indiscriminate use of these compounds has led to the emergence of resistance in Anopheles populations in Africa. Insecticide resistance surveillance programs are less frequent in Cabo Verde than in other African countries. This study aimed to investigate the circulation of the L1014F and L1014S alleles in natural populations of Anopheles arabiensis collected from two sampling sites in the city of Praia, Cabo Verde. METHODS: Anopheles larvae were collected from the two sampling sites and reared in the laboratory until the adult stage. Mosquitoes were first morphologically identified by classical taxonomy and then by molecular species identification using molecular markers. All Anopheles arabiensis were subjected to PCR analysis to screen for mutations associated to resistance in the Nav gene. RESULTS: A total of 105 mosquitoes, all belonging to the Anopheles gambiae complex, were identified by classical taxonomy as well as by molecular taxonomy. Molecular identification showed that 100% of the An. gambiae senso lato specimens analyzed corresponded to An. arabiensis. Analysis of the Nav gene revealed the presence of L1014S and L1014F alleles with frequencies of 0.10 and 0.19, respectively. CONCLUSIONS: Our data demonstrated, for the first time, the presence of the L1014F allele in the An. arabiensis population from Cabo Verde, as well as an increase in the frequency of the kdr L1014S allele reported in a previous study. The results of this study demonstrate the need to establish new approaches in vector control programs in Cabo Verde.


Anopheles/genetics , Insecticide Resistance/genetics , Africa, Western/epidemiology , Animals , Genes, Insect , Insecticides/adverse effects , Malaria/transmission , Mosquito Vectors/genetics , Mutation
6.
Parasit Vectors ; 14(1): 332, 2021 Jun 26.
Article En | MEDLINE | ID: mdl-34174947

Mosquitoes of the genus Aedes are the main vectors of many viruses, e.g. dengue and Zika, which affect millions of people each year and for which there are limited treatment options. Understanding how Aedes mosquitoes tolerate high viral loads may lead to better disease control strategies. Elucidating endogenous viral elements (EVEs) within vector genomes may give exploitable biological insights. Previous studies have reported the presence of a large number of EVEs in Aedes genomes. Here we investigated if flavivirus EVEs are conserved across populations and different Aedes species by using ~ 500 whole genome sequence libraries from Aedes aegypti and Aedes albopictus, sourced from colonies and field mosquitoes across continents. We found that nearly all flavivirus EVEs in the Ae. aegypti reference genome originate from four separate putative viral integration events, and that they are highly conserved across geographically diverse samples. By contrast, flavivirus EVEs in the Ae. albopictus reference genome originate from up to nine distinct integration events and show low levels of conservation, even within samples from narrow geographical ranges. Our analysis suggests that flaviviruses integrated as long sequences and were subsequently fragmented and shuffled by transposable elements. Given that EVEs of Ae. aegypti and Ae. albopictus belong to different phylogenetic clades and have very differing levels of conservation, they may have different evolutionary origins and potentially different functional roles.


Aedes/virology , Flavivirus/physiology , Mosquito Vectors/virology , Virus Integration , Aedes/classification , Aedes/genetics , Animals , Flavivirus/genetics , Genome, Insect , Mosquito Vectors/classification , Mosquito Vectors/genetics , Phylogeny
7.
Parasit Vectors ; 13(1): 481, 2020 Sep 21.
Article En | MEDLINE | ID: mdl-32958043

BACKGROUND: Aedes spp. are responsible for the transmission of many arboviruses, which contribute to rising human morbidity and mortality worldwide. The Aedes aegypti mosquito is a main vector for chikungunya, dengue and yellow fever infections, whose incidence have been increasing and distribution expanding. This vector has also driven the emergence of the Zika virus (ZIKV), first reported in Africa which spread rapidly to Asia and more recently across the Americas. During the outbreak in the Americas, Cape Verde became the first African country declaring a Zika epidemic, with confirmed cases of microcephaly. Here we investigate the prevalence of ZIKV and dengue (DENV) infected Ae. aegypti mosquitoes in the weeks following the outbreak in Cape Verde, and the presence of insecticide resistance in the circulating vector population. Genetic diversity in the mosquito population was also analysed. METHODS: From August to October 2016, 816 Ae. aegypti mosquitoes were collected in several locations across Praia, Cape Verde, the major hot spot of reported ZIKV cases in the country. All mosquitoes were screened by reverse transcription PCR for ZIKV and DENV, and a subset (n = 220) were screened for knockdown insecticide resistance associated mutations in the voltage gated sodium channel (VGSC) gene by capillary sequencing. The mitochondrial NADH dehydrogenase subunit 4 (nad4) gene was sequenced in 100 mosquitoes. These data were compared to 977 global sequences in a haplotype network and a phylogenetic tree analysis. RESULTS: Two Ae. aegypti mosquitoes were ZIKV positive (0.25%). There were no SNP mutations found in the VGSC gene associated with insecticide resistance. Analysis of the nad4 gene revealed 11 haplotypes in the Cape Verdean samples, with 5 being singletons. Seven haplotypes were exclusive to Cape Verde. Several of the remaining haplotypes were frequent in the global dataset, being present in several countries (including Cape Verde) across five different continents. The most common haplotype in Cape Verde (50.6 %) was also found in Africa and South America. CONCLUSIONS: There was low-level Zika virus circulation in mosquitoes from Praia shortly after the outbreak. The Ae. aegypti population did not appear to have the kdr mutations associated with pyrethroid resistance. Furthermore, haplotype and phylogenetic analyses revealed that Cape Verde Ae. aegypti mosquitoes are most closely related to those from other countries in Africa and South America.


Aedes/genetics , Insecticide Resistance , Mosquito Vectors/genetics , Zika Virus Infection/transmission , Zika Virus/physiology , Aedes/drug effects , Aedes/physiology , Aedes/virology , Animals , Cabo Verde , Dengue/transmission , Dengue/virology , Dengue Virus/genetics , Dengue Virus/physiology , Female , Genetic Variation , Humans , Insecticides/pharmacology , Male , Mosquito Vectors/drug effects , Mosquito Vectors/physiology , Mosquito Vectors/virology , Phylogeny , Population Dynamics , Zika Virus/genetics , Zika Virus Infection/virology
8.
Malar J ; 18(1): 120, 2019 Apr 05.
Article En | MEDLINE | ID: mdl-30953531

BACKGROUND: Mosquitoes of the Anopheles gambiae complex are the main malaria vectors worldwide. Due to the lack of a vaccine to prevent malaria, the principal way to reduce the impact of this disease relies on the use of chemical insecticides to control its vectors. However, the intensive use of such compounds has led to the emergence of insecticide resistance in several Anopheles populations in Africa. This study aimed to investigate the presence of resistance alleles in an Anopheles arabiensis population from the City of Praia, capital of the Archipelago Cabo Verde, one of the countries on the World Health Organization list of countries that are on a path to eliminate local transmission of malaria. METHODS: Larvae from the Anopheles genus were collected using a one-pint dipper in three areas of City of Praia. Larvae were fed and maintained until the emergence of adult mosquitoes, and these were morphologically identified. In addition, molecular identification was performed using IGS markers and all An. arabiensis samples were subjected to PCR to screen for mutations associated to resistance in the Ace-1, Nav and GSTE2 genes. RESULTS: From a total of 440 mosquitoes collected, 52.3% were morphologically identified as An. gambiae sensu lato (s.l.) and 46.7% as Anopheles pretoriensis. The molecular identification showed that 100% of the An. gambiae s.l. were An. arabiensis. The mutations G119S in the Ace-1 gene and L119F in the GSTE2 gene were screened but not found in any sample. However, sequencing analysis for GSTE2 revealed the presence of 37 haplotypes, 16 polymorphic sites and a high genetic diversity (π = 2.67). The L1014S mutation in the Nav (voltage-gated sodium channel gene) was detected at a frequency of 7.3%. CONCLUSION: This is the first study to investigate the circulation of insecticide resistance alleles in An. arabiensis from Cabo Verde. The circulation of the L1014S allele in the population of An. arabiensis in the city of Praia suggests that pyrethroid resistance may arise, be quickly selected, and may affect the process of malaria elimination in Cabo Verde. Molecular monitoring of resistance should continue in order to guide the development of strategies to be used in vector control in the study region.


Anopheles/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Pyrethrins/pharmacology , Alleles , Animals , Anopheles/drug effects , Cabo Verde , Insect Proteins/metabolism , Malaria , Mosquito Vectors/drug effects , Polymerase Chain Reaction
9.
Acta Trop ; 152: 66-73, 2015 Dec.
Article En | MEDLINE | ID: mdl-26307496

In 2009, Cabo Verde diagnosed the first dengue cases, with 21,137 cases reported and Aedes aegypti was identified as the vector. Since the outbreak, chemical insecticides and source reduction were used to control the mosquito population. This study aimed to assess the susceptibility of A. aegypti populations from Santiago, Cabo Verde to insecticides and identify the mechanisms of resistance. Samples of A. aegypti eggs were obtained at two different time periods (2012 and 2014), using ovitraps in different locations in Santiago Island to establish the parental population. F1 larvae were exposed to different concentrations of insecticides (Bacillus thuringiensis var israelensis (Bti), diflubenzuron and temephos) to estimate the lethal concentrations (LC90) and calculate the respective rate of resistance (RR90). Semi-field tests using temephos-ABATE(®) were performed to evaluate the persistence of the product. Bottle tests using female mosquitoes were carried out to determine the susceptibility to the adulticides malathion, cypermethrin and deltamethrin. Biochemical and molecular tests were performed to investigate the presence of metabolic resistance mechanisms, associated with the enzymes glutathione S-transferases (GSTs), esterases and mixed-function oxidases (MFO) and to detect mutations or alterations in the sodium channel and acetylcholinesterase genes. A. aegypti mosquitoes from Santiago exhibited resistance to deltamethrin, cypermethrin (mortality<80%) and temephos (RR90=4.4) but susceptibility to malathion (mortality≥98%), Bti and diflubenzuron. The low level of resistance to temephos did not affect the effectiveness of Abate(®). The enzymatic analysis conducted in 2012 revealed slight changes in the activities of GST (25%), MFO (18%), α-esterase (19%) and ß-esterase (17%), but no significant changes in 2014. Target site resistance mutations were not detected. Our results suggest that the A. aegypti population from Santiago is resistant to two major insecticides used for vector control, deltamethrin and temephos. To our knowledge, this is the first report of temephos resistance in an African A. aegypti population. The low level of temephos resistance was maintained from 2012-2014, which suggested the imposition of selective pressure, although it was not possible to identify the resistance mechanisms involved. These data show that the potential failures in the local mosquito control program are not associated with insecticide resistance.


Aedes/drug effects , Dengue/prevention & control , Insecticide Resistance/drug effects , Insecticides/pharmacology , Larva/drug effects , Animals , Cabo Verde/epidemiology , Dengue/epidemiology , Disease Vectors , Female , Lethal Dose 50 , Mosquito Control/methods
10.
Parasit Vectors ; 8: 114, 2015 Feb 19.
Article En | MEDLINE | ID: mdl-25888847

BACKGROUND: Dengue is an arboviral disease caused by dengue virus (DENV), whose main vectors are the mosquitoes Aedes aegypti and Aedes albopictus. A. aegypti is the only DENV vector in Cape Verde, an African country that suffered its first outbreak of dengue in 2009. However, little is known about the variation in the level of vector competence of this mosquito population to the different DENV serotypes. This study aimed to evaluate the vector competence of A. aegypti from the island of Santiago, Cape Verde, to four DENV serotypes and to detect DENV vertical transmission. METHODS: Mosquitoes were fed on blood containing DENV serotypes and were dissected at 7, 14 and 21 days post-infection (dpi) to detect the virus in the midgut, head and salivary glands (SG) using RT-PCR. Additionally, the number of copies of viral RNA present in the SG was determined by qRT-PCR. Furthermore, eggs were collected in the field and adult mosquitoes obtained were analyzed by RT-PCR and the platelia dengue NS1 antigen kit to detect transovarial transmission. RESULTS: High rates of SG infection were observed for DENV-2 and DENV-3 whereas for DENV-1, viral RNA was only detected in the midgut and head. DENV-4 did not spread to the head or SG, maintaining the infection only in the midgut. The number of viral RNA copies in the SG did not vary significantly between DENV-2 and DENV-3 or among the different periods of incubation and the various titers of DENV tested. With respect to DENV surveillance in mosquitoes obtained from the eggs collected in the field, no samples were positive. CONCLUSION: Although no DENV positive samples were collected from the field in 2014, it is important to highlight that the A. aegypti population from Santiago Islands exhibited different degrees of susceptibility to DENV serotypes. This population showed a high vector competence for DENV-2 and DENV-3 strains and a low susceptibility to DENV-1 and DENV-4. Viral RNA copies in the SG remained constant for at least 21 dpi, which may enhance the vector capacity of A. aegypti and suggests the presence of a mechanism modulating virus replication in the SG.


Aedes/virology , Antigens, Viral/immunology , Dengue Virus/immunology , Dengue/transmission , Insect Vectors/virology , Animals , Cabo Verde/epidemiology , Cell Line , Dengue/virology , Dengue Virus/genetics , Dengue Virus/physiology , Female , Humans , Islands , Male , RNA, Viral/genetics , Salivary Glands/virology , Virus Replication
...